

Sous-dossier n°7 – Pièces nécessaires au titre du Code de l'environnement et du Code de l'Urbanisme Pièce 4 - Etude écoustique de l'étude d'impact

Etude Acoustique Prévisionnelle

Projet éolien Sucrerie (80)

EOLIENAffaire n° 2217-3

ENERTRAG
4-6 rue des Chauffours
95015 CERGY PONTOISE

Date Intervention: du 20 février au 03 mars 2017

Date Edition: 19 février 2020 Ce document comprend 107 pages

Agence de Ploemeur (56)

Parc Technologique de Soyé – 5, rue Copernic – 56270 PLOEMEUR Tél : 02 97 37 01 02 – Fax : 02 97 37 08 22 – Mob : 06 08 42 76 31

Agence de Brest (29)

6, rue Porstrein – 29200 BREST Tél : 02 98 46 19 99

email: contact@jlbi-acoustique.com

Sarl au capital de 46 896 € - RCS LORIENT 2004 B 99 n° SIRET 429 727 001 00035 - APE 7112B

ENERTRAG – Projet éolien Sucrerie (80) – Etude d'impact acoustique

Révision	Affaire	Description	Date	Intervenant	Rédacteur	Visa
Α	2217-1	Etude impact prévisionnelle	07/07/2017	MAV	MAV	FL
В	2217-1	Modifications	26/07/2017	1	MAV	FL
С	2217-1	Modifications	10/10/2017	1	MAV	FL
Α	2217-2	Etude d'impact prévisionnelle	18/01/2019	1	FL	MAV
Α	2217-3	Complément impacts cumulés	19/02/2020	1	ML	SLG

Synthèse des résultats

En considérant l'implantation de 6 éoliennes **VESTAS** de type **V150 avec serrations (STE)** sur mât de **125** mètres de hauteur pour le projet de Sucrerie, il apparait

En considérant le parc seul :

Emergences globales en ZER

- En période diurne : conformité en tous les points de mesures en considérant les éoliennes fonctionnant en mode nominal (Mode 0) ;
- En périodes nocturne : conformité en tous les points de mesures en considérant les éoliennes fonctionnant suivant un plan de fonctionnement adapté (voir chapitre 6.3).

Niveaux sonores en périmètre ICPE

Les niveaux sonores calculés au périmètre de l'installation sont conformes en périodes diurne et nocturne.

Tonalités marquées en ZER

Les profils spectraux des puissances acoustiques de l'éolienne ne contenant pas de tonalités marquées, aucune tonalité marquée ne devrait être observée au niveau des habitations.

En considérant les différents parcs et projets impactant la zone d'implantation de Sucrerie, dans un rayon de 6km (Liancourt-Fosse, Moulin Wable, Ouest Royen, Champ Serpette, Santerre, La Côte Noire, Hallu, La Vallée des Mouches et Plaine de Tilloi) :

Emergences globales en ZER

- En période diurne : conformité à tous les points de mesures en considérant les éoliennes fonctionnant en mode nominal (Mode 0) ;
- En période nocturne : conformité à tous les points de mesures en considérant les éoliennes fonctionnant en mode nominal (Mode 0) ;

Une étude sera réalisée dans une période d'un an suivant la mise en service du parc éolien afin d'avaliser cette étude prévisionnelle et, le cas échéant, de procéder à toute modification de fonctionnement des éoliennes permettant d'assurer le respect de la réglementation en vigueur et de prendre en compte toute avancée technologique du constructeur.

Les conclusions concernant les projets encore en instruction à ce jour n'étant pas connues, ce contrôle sera réalisé en appliquant le plan de gestion acoustique suivant en période nocturne :

Plan de Fonctionnement nocturne							
	3 m/s	4 m/s	5 m/s	6 m/s	7 m/s	8 m/s	9 m/s
S1	Mode 0	Mode 0	Mode 0	Mode 0	Mode 0	Mode 0	Mode 0
S2	Mode 0	Mode 0	Mode 0	Mode 0	Mode 0	Mode 0	Mode 0
S3	Mode 0	Mode 0	Mode 0	Mode 0	Mode 0	Mode 0	Mode 0
S4	Mode 0	Mode 0	Mode 0	Mode S01	Mode 0	Mode 0	Mode 0
S5	Mode 0	Mode 0	Mode 0	Mode 0	Mode 0	Mode 0	Mode 0
S6	Mode 0	Mode 0	Mode 0	Mode 0	Mode 0	Mode 0	Mode 0

JLBi Conseils – n°2217-3A – février 2020 Page 2 sur 107

Sommaire

1	Objet de la mission	4
1.1 1.2		
2	Description sommaire du site	5
2.1 2.2 2.3 2.4 2.5	Les parcs éoliens voisins Description de l'environnement et de son paysage sonore Positionnement des points de mesure	5 6 7
3	Aspect réglementaire	10
3.1	Réglementation acoustique applicable	10
4	Protocole d'étude	12
4.1 4.2		
5	Conditions de mesurage	21
5.1 5.2		
6	Résultats	23
6.1 6.2 6.3 6.4 6.5	Etude acoustique prévisionnelle	
7	Impacts cumulés	35
7.1 7.2 7.3 7.4	Niveaux de bruit résiduel incluant les parcs et projets voisins Emergences prévisionnelles des parcs éoliens exploités par ENERTRAG	44 47
8	Conclusion	51
	ocalisation de l'étude	
	otographiesesures acoustiques	
	prrélation bruit / vent	
	odélisation et cartes de bruit	
	ocumentations techniques	
	exique	
	olet Santé	
	tériel utilisé	
	tovérification du matériel sonométrique	

JLBi Conseils – n°2217-3A – février 2020 Page 3 sur 107

ENERTRAG - Projet éolien Sucrerie (80) - Etude d'impact acoustique

1 Objet de la mission

1.1 La mission

Cette mission acoustique a pour objet de :

- Définir, à partir de mesures, les niveaux de bruit résiduel afin de quantifier l'état sonore initial autour du projet d'implantation d'un parc éolien sur le site Sucrerie (80) selon la direction de vent principale.
- Prendre en compte les parcs et projets éoliens existants autour du site de Sucrerie pour l'établissement des niveaux de bruit résiduel. Les parcs ou projet d'Ouest Royen, Champ Serpette, Santerre, La Côte Noire, Hallu, La Vallée des Mouches et Plaine de Tilloi seront considérés.
- Calculer l'impact acoustique prévisionnel généré par l'exploitation du projet de parc éolien de Sucrerie, en considérant des turbines de type VESTAS V150 4,0MW sur mât de 125m. Son impact sera cumulé à l'exploitation des deux parcs éoliens de Liancourt-Fosse et Moulin Wable, également gérés par ENERTRAG.
- Optimiser si besoin le fonctionnement des éoliennes du projet de Sucrerie pour atteindre la conformité.

Elle rentre dans le cadre d'une étude environnementale réalisée à l'initiative de la société **ENERTRAG**, en regard de l'Arrêté du 26 août 2011 relatif aux installations de production d'électricité utilisant l'énergie mécanique du vent au sein d'une installation soumise à autorisation au titre de la rubrique 2980 de la législation des ICPE.

Note préliminaire :

Depuis le 25 août 2011, les parcs éoliens sont entrés dans la législation des Installations Classées pour la Protection de l'Environnement. A ce titre, la réglementation sur le bruit des éoliennes a été modifiée. Les émissions sonores des parcs éoliens sont réglementées par la section 6 de l'Arrêté du 26 août 2011 relatif aux installations de production d'électricité utilisant l'énergie mécanique du vent. Cet arrêté remplace les dispositions réglementaires sur les bruits de voisinage (Décret n° 2006-1099 du 31 août 2006).

1.2 Les acteurs

Demandeur ENERTRAG

4-6 rue des Chauffours

95015 CERGY

Mme Lorraine DELACOTE

Mail ·

lorraine.delacote@enertrag.com

Situation du Projet

Projet éolien de Sucrerie (80)

JLBi Conseils – n°2217-3A – février 2020 Page 4 sur 107

2 Description sommaire du site

2.1 Le parc éolien

L'implantation du parc éolien de Sucrerie est projetée sur les communes de Liancourt Fosse, Fresnoy les Roye et Gruny dans le département de la Somme (80). L'altitude moyenne de la zone d'implantation des éoliennes est de 90 m environ.

Le projet prévoit l'implantation de 6 éoliennes de modèle VESTAS V150 avec serration (STE) de 125m de hauteur de moyeu.

2.2 Les parcs éoliens voisins

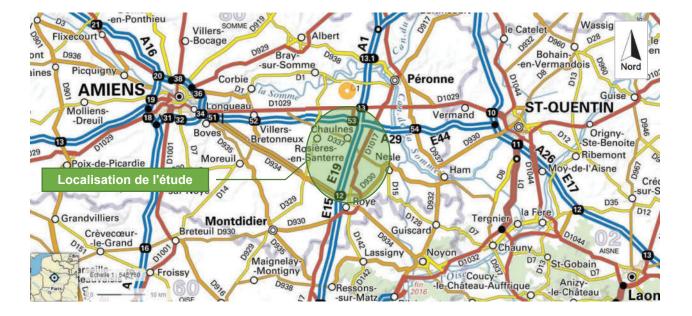
En considérant la zone d'implantation du projet éolien Sucrerie, neuf parcs éoliens se trouvent ou sont projetés à proximité :

- Le parc éolien de Liancourt constitué de 3 éoliennes de modèle ENERCON E-92 / 2300 kW bridée à 2000 kW de 108m de hauteur de moyeu;
- Le projet éolien de Moulin Wable constitué de 3 éoliennes de modèle ENERCON E-103 / 2350 kW de 98m de hauteur de moyeu;
- Le parc éolien de Ouest Royen constitué de 15 éoliennes de modèle GE ENERGY GE103-85 de 88,5m de hauteur de moyeu ,
- Le projet éolien de Champ Serpette constitué de 8 éoliennes de modèle VESTAS V117 de 91,5m de hauteur de moyeu ,
- Le projet éolien d'Hallu constitué de 4 éoliennes VESTAS V100 2MW de 100m de hauteur de moyeu,
- Le parc éolien de la Côte Noire constitué de 8 éoliennes VESTAS V117 3,45MW de 80m de hauteur de moyeu ,
- Le parc éolien de la Plaine de Tilloi constitué de13 éoliennes ENERCON E82 2,3MW de 99m de hauteur de moyeu ,
- Le projet éolien de Santerre constitué de 4 éoliennes VESTAS V90 2MW de 80m de hauteur de moyeu,
- Le projet éolien de la Vallée des Mouches constitué de 5 éoliennes SIEMENS SWT130 4,3MW de 115m de hauteur de moyeu.

Les contributions sonores de ces neuf parcs éoliens seront prises en compte pour le calcul de l'impact prévisionnel du projet de Sucrerie.

JLBi Conseils – n°2217-3A – février 2020 Page 5 sur 107

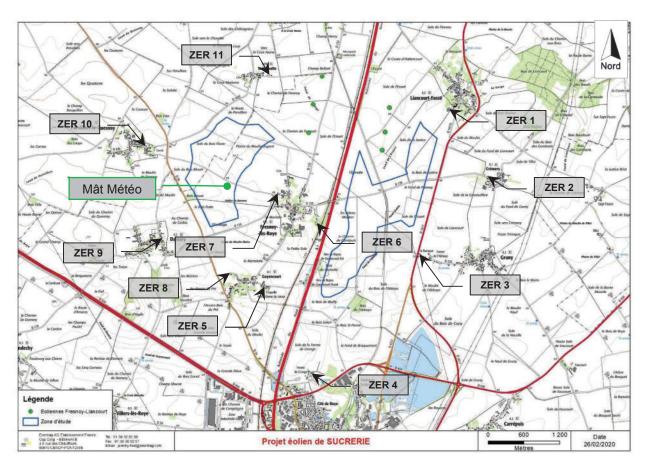
ENERTRAG - Projet éolien Sucrerie (80) - Etude d'impact acoustique


2.3 Description de l'environnement et de son paysage sonore

La zone est globalement qualifiée de rurale : les habitations sont dispersées en petits hameaux. La végétation est assez rare elle se compose de parcelles boisées sur les flancs du plateau autour du projet, et de grandes surfaces cultivées.

Il n'existe pas de zones dites "sensibles" dans le secteur d'étude (bâtiments hospitaliers et/ou sanitaires).

Les principales sources sonores relevées sur le site sont :


- la circulation des véhicules empruntant les dessertes locales;
- l'activité des exploitations agricoles (cultures et élevages);
- l'activité de la nature (flore et faune : bruits des feuillages de certaines zones boisées sous l'action du vent, oiseaux, aboiements ...).

JLBi Conseils – n°2217-3A – février 2020 Page 6 sur 107

2.4 Positionnement des points de mesure

La carte suivante illustre l'emplacement des points de mesure acoustique et du mât de mesure du vent de 10 mètres :

Les points de mesures ont été déterminés en concertation avec ENERTRAG. Ils correspondent aux ZER (zone à émergence règlementée) les plus proches du projet de parc éolien. Les points de mesures sont placés de façon à mesurer les niveaux sonores résiduels représentatifs de la zone étudiée et à caractériser les habitations et les zones urbanisables autour du projet.

Toutes les zones constructibles et les habitations sensibles sont prises en compte dans l'ensemble de l'étude

ZER	Situation	Riverain	Environnement sonore	
1	Lieu-dit situé au Nord- Est de la poche Est du projet éolien.	M. BOBOEUF	Habitation située en limite Sud-Ouest du hameau. L'environnement sonore se caractérise par l'activité de la nature (oiseaux, vent dans les feuillages).	
2	Crémery Lieu-dit situé à l'Est de la poche Est du projet éolien.	M. ANTIOCHES	Habitation située en limite Nord-Ouest du hameau. L'environnement sonore se caractérise par l'activité de la nature (oiseaux, vent dans les feuillages) et dans une moindre mesure par le bruit de la circulation sur la route départementale n°1017 située à environ 750m à l'Ouest.	

JLBi Conseils – n°2217-3A – février 2020 Page 7 sur 107 JLBi Conseils – n°2217-3A – février 2020

ZER	Situation	Riverain	Environnement sonore
3	Gruny (Ouest) Lieu-dit situé au Sud- Est de la poche Est du projet éolien.	M. GOLDKRANZ	Habitation située en limite Ouest du hameau. L'environnement sonore se caractérise par l'activité de la nature (oiseaux, vent dans les feuillages) et par le bruit de la circulation sur la route départementale n°1017 qui longe l'habitation par l'Ouest.
4	Roye Lieu-dit situé au Sud du projet éolien.	M. LEMAIRE	Habitation située en limite Nord de la commune. L'environnement sonore se caractérise par l'activité de la nature (oiseaux, vent dans les feuillages), par les bruits de la ferme à proximité et par le bruit de la circulation sur la route départementale n°934 qui longe l'habitation par le Sud et sur l'autoroute A1 située à environ 600m à l'Ouest.
5	Goyencourt (Est) Lieu-dit situé au Sud du projet éolien.	M. CAPELLE	Habitation située en limite Est du hameau. L'environnement sonore se caractérise par l'activité de la nature (oiseaux, vent dans les feuillages), par le bruit de la circulation sur l'autoroute A1 située à environ 650m à l'Est et par le bruit de la voie ferrée située à environ 400m à l'Est.
6	Fresnoy-Les-Roye (Sud/Est) Lieu-dit situé entre les deux poches d'implantation du projet éolien.	M. JANY	Habitation située en limite Est du hameau. L'environnement sonore se caractérise par l'activité de la nature (oiseaux, vent dans les feuillages), par le bruit de la circulation sur l'autoroute A1 située à environ 175m à l'Est et par le bruit de la voie ferrée située à 60 mètres à l'Est.
7	Fresnoy-Les-Roye (Nord/Ouest) Lieu-dit situé entre les deux poches d'implantation du projet éolien.	M. NAMUR	Habitation située en limite Nord-Ouest du hameau. L'environnement sonore se caractérise par l'activité de la nature (oiseaux, vent dans les feuillages), par le bruit de la circulation sur l'autoroute A1 située à environ 1000m à l'Est et par le bruit de la voie ferrée située à 920 mètres à l'Est.
8	Goyencourt (Ouest) Lieu-dit situé au Sud de la poche Ouest du projet éolien.	M. FARCY	Habitation située en limite Nord-Ouest du hameau. L'environnement sonore se caractérise par l'activité de la nature (oiseaux, vent dans les feuillages), par le bruit de la circulation sur l'autoroute A1 située à environ 1160m à l'Est et par le bruit de la voie ferrée située à 930 mètres à l'Est.
9	Damery Lieu-dit situé au Sud- Ouest de la poche Ouest du projet éolien.	Mme LEROY	Habitation située en limite Nord-Est du hameau. L'environnement sonore se caractérise par l'activité de la nature (oiseaux, vent dans les feuillages).
10	Parvillers-Le- Quesnoy Lieu-dit situé à l'Ouest de la poche Ouest du projet éolien.	M. RICQUEBOURG	Habitation située en limite Est du hameau. L'environnement sonore se caractérise par l'activité de la nature (oiseaux, vent dans les feuillages).
11	Lieu-dit situé au Nord de la poche Ouest du projet éolien.	M. LENOIR	Habitation située en limite Nord-Est du hameau. L'environnement sonore se caractérise par l'activité de la nature (oiseaux, vent dans les feuillages).

JLBi Conseils – n°2217-3A – février 2020 Page 8 sur 107

Adresse des riverains ayant fait l'objet de mesures

ZER	Riverain	adresse	Commune
1	M. BOBOEUF	1 rue de Flandre	Liancourt-fosse
2	M. ANTIOCHES	28 rue de l'Eglise	Crémery
3	M. GOLDKRANZ	2 Bis B rue de L'Abbaye	Gruny (OUEST)
4	M. LEMAIRE	Chemin de Grange	Roye
5	M. CAPELLE	1 rue Notre Dame de Liesse	Goyencourt EST
6	M. JANY	8 rue de Chaulnes	Fresnoy-Les-Roye (SUD/EST)
7	M. NAMUR	6 rue du Tour de Ville	Fresnoy-Les-Roye (NORD/OUEST)
8	M. FARCY	7 rue du Jeu de Paume	Goyencourt (OUEST)
9	Mme LEROY	10 rue de Parvilliers	Damery
10	M. RICQUEBOURG	23 Grande Rue	Parvillers-Le-Quesnoy
11	M. LENOIR	9 rue Nicolas Cuvilly	La Chavatte

2.5 Niveau sonore particulier généré par les éoliennes

Les bruits générés par le fonctionnement d'une éolienne sont les suivants :

Document extrait de la conférence Wind Turbine Noise (Lyon 2007)

- bruit aérodynamique provoqué par la rotation des pales (bout de pale) et le passage de celles-ci devant le mât
- bruit mécanique provenant de la nacelle, ainsi que du pied de l'éolienne (transformateur et refroidissement)

JLBi Conseils – n°2217-3A – février 2020 Page 9 sur 107

ENERTRAG - Projet éolien Sucrerie (80) - Etude d'impact acoustique

3 Aspect réglementaire

3.1 Réglementation acoustique applicable

Depuis la loi Grenelle 2 (loi n° 2010-788 du 12 juillet 2010) portant engagement national pour l'environnement, les éoliennes relèvent du régime des installations classées pour la protection de l'environnement (ICPE). Les décrets encadrant l'entrée des éoliennes dans la législation des ICPE ont été publiés le 25 août 2011 au Journal Officiel.

Le **Décret n° 2011-984 du 23 août 2011** modifiant la nomenclature des installations classées a créé une nouvelle rubrique (2980) dédiée aux éoliennes. Il soumet :

- au régime de l'autorisation les installations d'éoliennes comprenant au moins un aérogénérateur dont le mât a une hauteur supérieure ou égale à 50 mètres, ainsi que celles comprenant des aérogénérateurs d'une hauteur comprise entre 12 et 50 mètres et d'une puissance supérieure ou égale à 20 MW. L'Arrêté du 26 août 2011 fixe les prescriptions applicables aux aérogénérateurs désormais soumis à autorisation. La section 6 correspond à la section « bruit ».
- **au régime de la déclaration**, les installations d'éoliennes comprenant des aérogénérateurs d'une hauteur comprise entre 12 et 50 mètres et d'une puissance inférieure à 20 MW

Le projet de parc éolien de Sucrerie (80) est soumis à **autorisation** au titre des ICPE et donc à l'**Arrêté du 26 août 2011** relatif aux installations de production d'électricité utilisant l'énergie mécanique du vent au sein d'une installation soumise à autorisation au titre de la rubrique 2980 de la législation des ICPE.

Les règles à respecter sont les suivantes :

Emergence dans les zones à émergence réglementée (ZER) :

Les émissions sonores émises par l'installation font l'objet d'un calcul de l'**émergence**, différence entre le bruit ambiant (installation en fonctionnement) et le bruit résiduel (en l'absence du bruit généré par l'installation) dans les zones à émergence réglementée (ZER).

Les ZER sont les zones construites ou constructibles définies par des documents d'urbanisme opposables aux tiers et publiés à la date de l'autorisation pour les installations nouvelles ou à la date du permis de construire pour les installations existantes.

🖔 Emergence globale réglementaire e0 :

Emergence admissible pour la période allant de 07h à 22h	Emergence admissible pour la période allant de 22h à 07h
5 dB(A)	3 dB(A)

Ces valeurs ne sont à respecter que si le niveau de bruit ambiant existant dans les ZER (incluant le bruit du parc éolien) est supérieur à 35 dB(A).

Terme correctif (c) (s'ajoutant à l'émergence globale réglementaire en fonction du temps de présence cumulé du bruit particulier dans la période légale étudiée)

Durée cumulée d'apparition du bruit particulier T		Terme correctif (c) en dB(A)
20 minutes <	T ≤ 2 heures	3
2 heures <	T ≤ 4 heures	2
4 heures	T ≤ 8 heures	1
Т	> 8 heures	0

JLBi Conseils – n°2217-3A – février 2020 Page 10 sur 107

Niveau de bruit maximal en limite du périmètre de l'installation :

L'Arrêté du 26 août 2011 fixe les niveaux sonores à ne pas dépasser en limite du périmètre de mesure :

Périodes	Niveaux limites admissibles pour la période allant de 07h à 22h	Niveaux limites admissibles pour la période allant de 22h à 07h
Niveau sonore limite admissible	70 dB(A)	60 dB(A)

Cette disposition n'est pas applicable si le bruit résiduel pour la période considérée est supérieur à cette limite.

Le périmètre de mesure correspond au plus petit polygone dans lequel sont inscrits les disques de centre chaque aérogénérateur et de rayon R défini comme suit :

R = 1,2 × (hauteur de moyeu + longueur d'un demi-rotor)

Tonalité marquée :

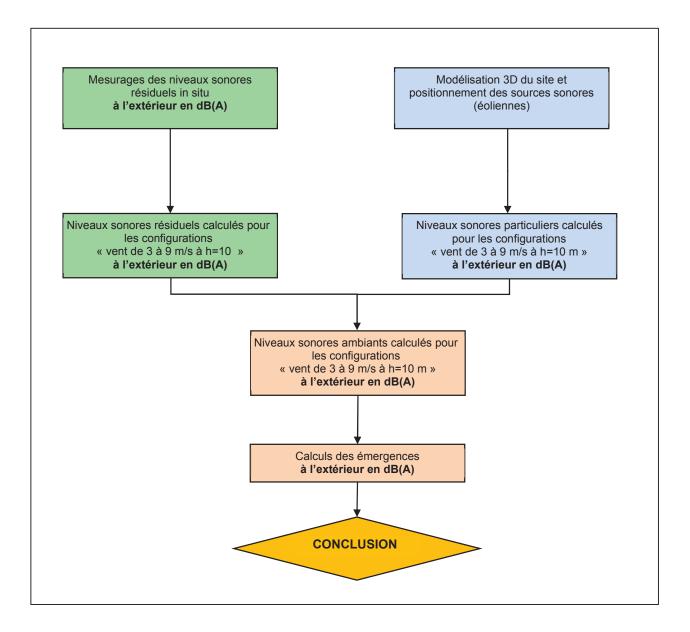
La tonalité marquée établie ou cyclique, ne peut avoir une durée d'apparition supérieure à 30 % de la durée de fonctionnement de l'activité pour chaque période considérée (diurne et nocturne).

La tonalité marquée est détectée dans un spectre non pondéré de tiers d'octave quand la différence de niveaux entre la bande de tiers d'octave et les quatre bandes de tiers d'octave les plus proches (les deux bandes immédiatement inférieures et les deux bandes immédiatement supérieures) atteint ou dépasse les niveaux indiquées ci-dessous pour la bande de fréquence considérée, pour une acquisition minimale de 10 secondes :

63 Hz à 315 Hz	400 Hz à 1250 Hz	1600 Hz à 6300 Hz
10 dB	5 dB	5 dB

Normes de mesurage

- Norme NF S 31-010 de décembre 1996 « Caractérisation et mesurage des bruits de l'environnement Méthodes particulières de mesurage »
- Norme NF S 31-010/A1 de décembre 2008 : amendement A1 de la norme NF S 31-010 de décembre 1996 portant sur les conditions météorologiques à prendre en compte pour le mesurage des bruits de l'environnement.
- Norme NF S 31-114 de juillet 2011 « Mesurage du bruit dans l'environnement avant et après installation d'éoliennes »


Le projet de norme **NF S 31-114** a pour objectif de compléter et de préciser certains points pour l'adapter aux réceptions de projets éoliens. Dans ce rapport, il est fait référence à sa version de Juillet 2011. Cette norme est une norme de mesurage, et non une norme d'étude avant construction. Toutefois, comme il est stipulé dans celleci : « [...] Certains aspects peuvent néanmoins constituer une source d'inspiration [...]. »

Le présent document est conforme aux normes actuellement en vigueur, et prend en compte la tendance des évolutions normatives en cours.

JLBi Conseils – n°2217-3A – février 2020 Page 11 sur 107

ENERTRAG - Projet éolien Sucrerie (80) - Etude d'impact acoustique

4 Protocole d'étude

JLBi Conseils – n°2217-3A – février 2020 Page 12 sur 107

4.1 Etat initial

4.1.1 Mesures acoustiques

Les mesures ont été réalisées conformément :

- à la norme NF S 31-114 de juillet 2011,
- à la norme NF S 31-010 de décembre 1996.
- à la norme NF S 31-010/A1 de décembre 2008,

sans déroger à aucune de leurs dispositions.

Emplacement des points de mesure (cf. plans de localisation annexe A)

Point	Lieu-Dit	Name	Position L93		
Point		Nom	X	Υ	
1	Liancourt-fosse	M. BOBOEUF	686452	6961469	
2	Crémery	M. ANTIOCHES	687095	6960429	
3	Gruny (Ouest)	M. GOLDKRANZ	685945	6958990	
4	Roye	M. LEMAIRE	684251	6956919	
5	Goyencourt (Est)	M. CAPELLE	683364	6958445	
6	Fresnoy-Les-Roye (Sud/Est)	M. JANY	684217	6959546	
7	Fresnoy-Les-Roye (Nord/Ouest)	M. NAMUR	683516	6960012	
8	Goyencourt (Ouest)	M. FARCY	682922	6958707	
9	Damery	Mme LEROY	681609	6959347	
10	Parvillers-Le-Quesnoy	M. RICQUEBOURG	681358	6960885	
11	La Chavatte	M. LENOIR	683417	6962063	

La campagne de mesures s'est déroulée du 20 février au 03 mars 2017 au droit des tiers les plus proches du projet.

Mesures acoustiques

Les mesures acoustiques ont été réalisées où le futur impact sonore des éoliennes est jugé le plus élevé : à l'extérieur, dans les lieux de vie habituels, tels que jardins et terrasses, endroits dans lesquels les personnes évoluent au quotidien.

→ Mesurage des niveaux de bruit résiduel en L_{Aeq1s} (niveau global et par bande de tiers d'octave)

Calcul des indices fractiles L₅₀ sur les intervalles de base de 10 minutes, à partir des L_{Aeq,1s}: L_{50,10 min}

Les événements sonores particuliers, inhabituels et perturbant la mesure sont exclus de l'analyse, sur base d'un codage sur les chronogrammes. Les échantillons correspondant à des vitesses de vent supérieures à 5 m/s au niveau du microphone sont également exclus de l'analyse.

L'analyse se base sur la plage de vent [3 m/s ; 9 m/s] mesuré au niveau de l'emplacement des éoliennes, à une hauteur de 10 mètres, et moyenné par pas de 10 minutes.

On considèrera, d'une manière générale, qu'en dessous de 2,5 m/s à la hauteur de référence h = 10 mètres, les éoliennes ne fonctionnent pas, et qu'au-dessus de 9 m/s à la même hauteur, l'émergence sonore est plus faible que pour des vitesses moindres car le bruit du vent au sol augmente plus vite que le bruit des éoliennes.

JLBi Conseils – n°2217-3A – février 2020 Page 13 sur 107

ENERTRAG - Projet éolien Sucrerie (80) - Etude d'impact acoustique

Classe homogène

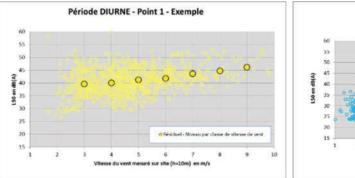
Les classes homogènes C sont les intervalles temporels retenus pour caractériser une situation acoustique homogène représentative de l'exposition des personnes au bruit. Une classe homogène est définie en fonction des facteurs environnementaux ayant une influence sur la variabilité des niveaux sonores : période de la journée (jour/nuit), saison, secteur de vent, activités humaines...

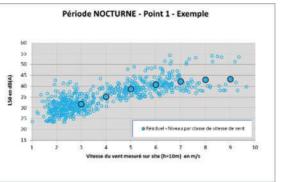
Ces intervalles doivent représenter des niveaux de bruit résiduel typiquement diurne ou nocturne. **On retient donc l'intervalle [22h-06h] pour la nuit et [08h-20h] pour le jour**.

Les périodes de soirée [20h-22h] sont en général des périodes transitoires pendant lesquelles le niveau de bruit résiduel est inférieur à celui observé en journée (réduction des activités humaines, de la circulation etc...). Le matin [06h-08h], autour du lever du soleil, nous sommes en présence du réveil de la nature, du chorus matinal des oiseaux et des activités humaines qui s'installent : ces périodes sont exclues.

L'analyse est réalisée pour un secteur de vent de plus ou moins 30° autour des directions dominantes du site projeté.

Dans cette étude, 2 classes homogènes ont pu être caractérisées :


- Période diurne, direction Sud /Ouest (entre 180 et 270°);
- Période nocturne, direction Sud / Ouest (entre 180 et 270°).


Détermination des indicateurs de bruit par classe de vitesse de vent :

L'objectif de la campagne de mesurage est de définir en chaque point de mesure les niveaux de pression acoustique équivalents considérés comme représentatifs de la situation acoustique pour une classe homogène C et pour une classe de vent V considérés. Ces indicateurs de bruit sont notés :

Pour une période représentative de la période diurne et de la période nocturne (classes homogènes de référence C), on associe les $L_{50,10min}$ avec la vitesse du vent mesurée à 10 mètres de hauteur par pas de dix minutes : on obtient un nuage de couples de points $L_{50,10min}$ / V_{10min} .

Exemple de nuage de couples L₅₀ / V et les indicateurs de bruit

Une classe de vitesse de vent correspond à une vitesse de vent de 1m/s de largeur, centrée sur une valeur entière.

Pour chaque classe de vitesse de vent au sein d'une classe homogène, **l'indicateur de bruit** est déterminé à l'aide des deux étapes :

 Calcul des valeurs médianes des couples "L_{50,10min} / V_{10min}" par classe de vent. Cette valeur est associée à la moyenne arithmétique des vitesses de vent mesurées pour former les couples « vitesse moyenne / indicateur sonore »;

JLBi Conseils – n°2217-3A – février 2020 Page 14 sur 107

 Pour chaque valeur de vitesse de vent entière, l'indicateur de bruit est ensuite déterminé par interpolation linéaire entre les couples « vitesse moyenne/indicateur sonore » des classes de vitesse de vent contiguës.

Pour chaque classe homogène, un nombre minimal de 10 descripteurs par classe de vitesse de vent est nécessaire pour calculer l'indicateur de bruit pour cette classe.

Vitesse de vent standardisée :

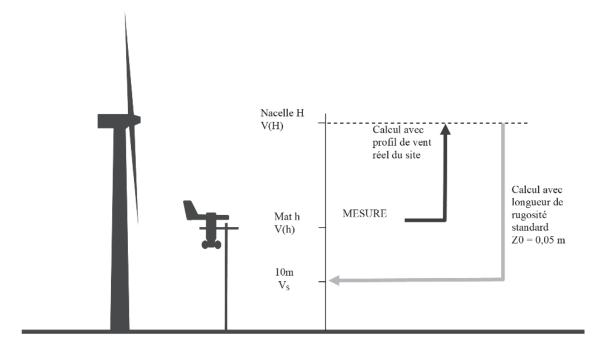
La vitesse de vent standardisée Vs correspond à une vitesse de vent calculée à 10 m de haut, sur un sol présentant une longueur de rugosité de référence Z0 de 0,05 m. Cette valeur permet de s'affranchir des conditions aérauliques particulières de chaque site.

Pour une mesure de vent réalisée à une hauteur différente de celle de la nacelle la vitesse de vent standardisée a été calculée à l'aide de la formule suivante (définie dans la norme NF EN 61400-11) :

 $Vs = V(h) \begin{bmatrix} \ln (Href/Z0) \ln (H/Z) \\ \ln (H/Z0) \ln (h/Z) \end{bmatrix}$

avec

Z0 : longueur de rugosité standardisée de 0,05 m,


Z : longueur de rugosité représentative du site étudié dans la classe homogène analysée (m)

H: hauteur de la nacelle (m),

Href: hauteur de référence (10m),

h : hauteur de mesure de l'anémomètre (m),

V(h) : vitesse mesurée à la hauteur h.

Remarque : A défaut d'avoir pu obtenir une longueur de rugosité pour ce site, le vent utilisé est celui mesuré à 10 mètres in situ.

JLBi Conseils – n°2217-3A – février 2020 Page 15 sur 107

ENERTRAG - Projet éolien Sucrerie (80) - Etude d'impact acoustique

4.1.2 Prise en compte du parc éolien de Liancourt

Pendant la campagne de mesures acoustiques réalisée du 20 février au 03 mars 2017 le parc éolien de Liancourt, voisin du projet de la Sucrerie, était en fonction. Ce parc est composé de 3 éoliennes Enercon E92 sur mâts de 108 mètres de hauteur. Son fonctionnement est bridé à 2 MW. Pendant la campagne de mesures, les trois éoliennes ont fonctionnées comme suit (données transmises par ENERTRAG):

Eolienne L1: Off du 20/02 au 03/03/2017;

Eolienne L2: Off du 20/02 au 28/02/2017 à 14h20 puis On jusqu'au 03/03/2017;

Eolienne L3: On du 20/02 au 03/03/2017.

Le but étant de caractériser des niveaux de bruit résiduel hors fonctionnement des 3 éoliennes constituant le parc de Liancourt, seule la période du 20/02 au 28/02/2017 a été considérée. La contribution de l'éolienne L3 a ensuite était soustraite aux niveaux sonores mesurés sur site.

A l'aide du logiciel CadnaA, nous modélisons le site compte tenu de sa topographie, des habitations existantes et de l'implantation des éoliennes.

Le calcul du niveau de bruit particulier généré est réalisé à partir de 1 éolienne de type **E92 bridée à 2MW** sur mât de **108m** pour la contribution du parc éolien de Liancourt.

Les simulations sont réalisées selon la norme ISO 9613-2.

Modélisation du site:

JLBi Conseils – n°2217-3A – février 2020 Page 16 sur 107

Position des éoliennes :

Lambert 93								
Eolienne	X	Υ						
L3	685573.85	6961594.42						

Puissance acoustique des éoliennes

Les puissances acoustiques globales et spectrales du mode 1 utilisées pour les calculs, proviennent de la documentation du constructeur ENERCON transmise par ENERTRAG (voir extrait en annexe) :

Puissances acoustiques globales et spectrales

Document ID: RA-120124-01-A en date du 11 mai 2012.

Elles sont standardisées à 10 mètres de hauteur.

	Puissances acoustiques globales de la E92 / 2300 kW – mât de 108 m <u>Mode 1 – Lw en dB(A)</u>											
Vs (m/s)	3*	4*	5	6	7	8	9					
Lw (dBA)	98	98	100,1	102,3	103,5	104,5	105					

^{*} Aucune puissance n'est donnée pour les classes de vitesses de vent de 3 et 4 m/s. Sur la base d'une extrapolation, le delta existant entre 5 et 6 m/s (environ 2 dB(A)) est utilisé pour calculer la puissance acoustique à 3 et 4 m/s (approche conservatrice).

Puissances acoustiques spectrales

Document ID: RA-120124-01-A en date du 11 mai 2012.

Les puissances acoustiques spectrales en bande d'octave ci-dessous ont été calculées à partir des valeurs données en tiers d'octave par le constructeur. Elles sont standardisées à 10 mètres de hauteur.

	Puissances acoustiques spectrales de la E92 / 2300 kW – mât de 108 m <u>Mode 1 – Lw en dB</u>											
Vs (m/s)	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz				
3	108,9	105,9	98,9	95,6	92,4	85,1	72,7	74,0				
4	108,9	105,9	98,9	95,6	92,4	85,1	72,7	74,0				
5	111,0	108,0	101,0	97,7	94,5	87,2	74,8	76,1				
6	111,7	108,3	102,2	100,4	97,6	89,7	76,5	78,2				
7	111,5	109,8	103,6	101,6	98,7	91,4	78,5	76,4				
8	111,5	110,0	103,9	102,0	99,3	92,0	79,2	75,3				
9	112,3	111,3	103,4	101,0	99,4	93,5	81,2	75,1				

JLBi Conseils – n°2217-3A – février 2020 Page 17 sur 107

ENERTRAG - Projet éolien Sucrerie (80) - Etude d'impact acoustique

4.2 Etat prévisionnel

Calcul prévisionnel du niveau de bruit particulier à l'extérieur :

A l'aide du logiciel CadnaA, nous modélisons le site compte tenu de sa topographie, des habitations existantes et de l'implantation des éoliennes.

Le calcul du niveau de bruit particulier généré est réalisé en considérant 6 éoliennes de type VESTAS V150 équipées du système STE sur mât de 125 mètres de hauteur pour la contribution du projet éolien.

Les simulations sont réalisées selon la norme ISO 9613-2.

Puissance acoustique des éoliennes

Les puissances acoustiques globales et spectrales des modes normaux utilisées pour les calculs, proviennent de la documentation du constructeur VESTAS transmise par ENERTRAG (voir extrait en annexe) :

NB : Les puissances acoustiques fournies sont identiques pour la V150 4,0MW et la V150 4,2MW. Il en va de même pour les modes bridés.

Puissances acoustiques globales

Document ID: 0067-7067 V09 en date du 25 septembre 2018.

Elles sont standardisées à 10 mètres de hauteur.

Puissances acoustiques globales de la V150 avec STE – mât de 125 m <u>Mode 0 – Lw en dB(A)</u>										
Vs (m/s)	3	4	5	6	7	8	9			
Lw (dBA) 92,1 95,9 101,4 104,7 104,9 104,9 104,9										

Puissances acoustiques spectrales

Document ID: 0067-4767 V05 en date du 15 mars 2018.

Les puissances acoustiques spectrales en bande d'octave ci-dessous ont été calculées à partir des valeurs données en tiers d'octave par le constructeur. Elles sont standardisées à 10 mètres de hauteur.

Puissances acoustiques spectrales de la V150 avec STE – mât de 125 m <u>Mode 0 – Lw en dB(A)</u>											
Vs (m/s)	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz			
3	72,7	80,6	85,4	87,3	86,2	82,0	75,0	64,8			
4	76,6	84,4	89,2	91,1	90,0	85,8	78,7	68,5			
5	82,3	90,0	94,7	96,5	95,4	91,3	84,3	74,2			
6	85,7	93,4	98,0	99,8	98,7	94,6	87,7	77,7			
7	86,1	93,6	98,2	100,0	98,9	94,9	88,1	78,4			
8	86,3	93,6	98,2	99,9	98,9	95,0	88,4	78,9			
9	86,4	93,7	98,2	99,9	98,9	95,1	88,6	79,3			

JLBi Conseils – n°2217-3A – février 2020 Page 18 sur 107

Position des éoliennes :

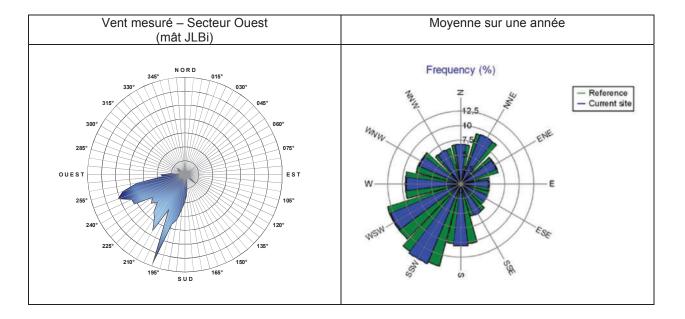
Lambert 93									
Eolienne	X	Υ							
S1	683041,029	6960978,560							
S2	682772,572	6960512,766							
S3	682683,198	6960042,264							
S4	686192,084	6960949,694							
S5	686124,231	6960499,223							
S6	685728,786	6959622,147							

Modélisation du site:

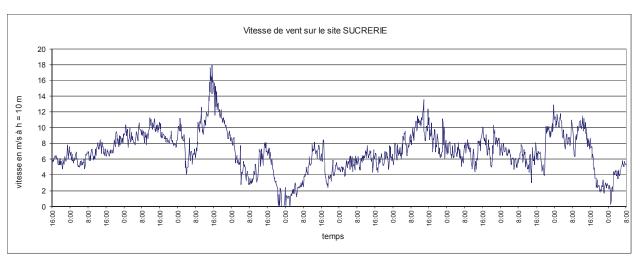
 JLBi Conseils – n°2217-3A – février 2020
 Page 19 sur 107

 JLBi Conseils – n°2217-3A – février 2020
 Page 20 sur 107

<u>Distance hameau / éolienne la plus proche</u> :


ZER	Distance ZER par rapport à l'éolienne la plus proche
1 - Liancourt-fosse	Environ 600 mètres de S4
2 - Crémery	Environ 930 mètres de S5
3 - Gruny (Ouest)	Environ 600 mètres de S6
4 - Roye	Environ 3000 mètres de S6
5 - Goyencourt (Est)	Environ 1700 mètres de S3
6 - Fresnoy-Les-Roye (Sud/Est)	Environ 1450 mètres de S6
7 - Fresnoy-Les-Roye (Nord/Ouest)	Environ 820 mètres de S3
8 - Goyencourt (Ouest)	Environ 1330 mètres de S3
9 - Damery	Environ 1180 mètres de S3
10 - Parvillers-Le-Quesnoy	Environ 1260 mètres de S2
11 - La Chavatte	Environ 880 mètres de S1

5 Conditions de mesurage


5.1 Directions et vitesses de vent mesurées à 10 mètres

Cette campagne a permis de récolter les données acoustiques dans la direction de vent principale : Sud-Ouest

Orientation des vents pendant la période de mesurage (avec les échantillons conservés et représentatifs). (Nombre d'échantillons de 10 minutes par secteur de 5°)

Présentation des vitesses de vent

JLBi Conseils – n°2217-3A – février 2020 Page 21 sur 107

ENERTRAG - Projet éolien Sucrerie (80) - Etude d'impact acoustique

5.2 Vitesses du vent au niveau des microphones

La vitesse du vent au niveau des microphones (soit une hauteur d'environ 1,50 mètre) ne doit pas excéder 5 m/s conformément aux recommandations des normes (NF S 31-010 et projet NF S 31-114).

$$V_{1.5m} = V_{10m}$$
. (In 1.5 – In L) / (In 10 – In L) avec L = longueur de rugosité.

La longueur de rugosité au niveau des emplacements des sonomètres sur le site de Sucrerie est estimée à 0,2 m.

	Table des classes et lo	ongueurs de rugosité selon l'Atlas Eolien Européen (WAsP)
Classe de rugosité	Longueur de rugosité en mètre	Type de paysage
0	0.0002	Surface d'eau
0.5	0.0024	Terrain complètement dégagé avec une surface lisse, p.ex. une piste d'atterrissage en béton ou de l'herbe fraîchement coupée.
1	0.03	Terrain agricole dégagé, sans clôtures ou haies vives, et avec très peu de constructions. Seulement des collines doucement arrondies.
1.5	0.055	Terrain agricole avec quelques constructions et des haies vives de 8m de haut situées à environ 1.250m les unes des autres.
2	0.1	Terrain agricole avec quelques constructions et des haies vives de 8m de haut situées à environ 500m les unes des autres.
2.5	0.2	Terrain agricole avec beaucoup de constructions, arbrisseaux et plantes, ou des haies vives de 8m de haut situées à environ 250m les unes des autres.
3	0.4	Villages, petites villes, terrain agricole avec de nombreuses ou de hautes haies vives, des forêts et un terrain très accidenté.
3.5	0.8	Grandes villes avec de hauts immeubles.
4	1.6	Très grandes villes avec de hauts immeubles et des grattes ciel.

En considérant la rugosité du site, nous évaluons les vitesses de vent à la hauteur de 1,50 m supérieures à 5 m/s lorsque la vitesse du vent à une hauteur de 10 m est supérieure à 10 m/s environ. Les échantillons supérieurs à 10 m/s ont donc été supprimés.

JLBi Conseils – n°2217-3A – février 2020 Page 22 sur 107

6 Résultats

6.1 Etat initial

6.1.1 Prise en compte du parc éolien de Liancourt

Les tableaux suivants présentent les niveaux de bruit mesurés sur site, les contributions de l'éolienne L3 du parc de Liancourt (bruit particulier) et les niveaux de bruit résiduel obtenus après soustraction* :

La période d'échantillonnage est de 10 minutes.

Tous les niveaux sonores sont exprimés en dB(A). Les niveaux de bruit mesuré et les niveaux de bruit résiduel sont arrondis à 0,5 dB(A) près.

Période diurne :

		Période diurne : Niveaux en dB(A)							
Situation	1 x E92 108m			Vitesse du	vent en m/s	à h = 10 m	1		
	Bridée à 2MW	3 m/s	4 m/s	5 m/s	6 m/s	7 m/s	8 m/s	9 m/s	
ZER 1	Bruit mesuré	42,5	43,0	44,5	45,0	46,0	47,5	50,5	
Liancourt-	Bruit particulier	21,6	21,6	23,7	25,7	26,9	27,3	27,3	
fosse	Bruit résiduel	42,5	43,0	44,5	45,0	46,0	47,5	50,5	
	Bruit mesuré	42,0	42,5	42,5	43,0	43,5	45,5	49,5	
ZER 2 Crémery	Bruit particulier	17,9	17,9	20,0	21,8	23,0	23,3	23,4	
Oremery	Bruit résiduel	42,0	42,5	42,5	43,0	43,5	45,5	49,5	
ZER 3	Bruit mesuré	51,5	52,0	52,0	52,5	54,5	55,5	57,5	
Gruny	Bruit particulier	17,2	17,2	19,3	21,1	22,2	22,6	22,6	
(Ouest)	Bruit résiduel	51,5	52,0	52,0	52,5	54,5	55,5	57,5	
	Bruit mesuré	49,0	49,0	49,5	49,5	50,5	52,0	54,5	
ZER 4 Rove	Bruit particulier	8,4	8,4	10,5	11,8	12,8	13,0	13,3	
Noye	Bruit résiduel	49,0	49,0	49,5	49,5	50,5	52,0	54,5	
ZER 5	Bruit mesuré	42,0	43,5	46,0	47,0	52,5	55,0	58,0	
Goyencourt	Bruit particulier	11,2	11,2	13,3	14,7	15,8	16,1	16,3	
(Est)	Bruit résiduel	42,0	43,5	46,0	47,0	52,5	55,0	58,0	
ZER 6	Bruit mesuré	45,0	47,0	50,0	52,0	55,5	58,5	60,5	
Fresnoy-Les-	Bruit particulier	18,4	18,4	20,5	22,3	23,5	23,8	23,9	
Roye (Sud/Est)	Bruit résiduel	45,0	47,0	50,0	52,0	55,5	58,5	60,5	
ZER 7	Bruit mesuré	40,0	42,0	44,0	45,0	47,0	49,5	53,0	
Fresnoy-Les- Roye	Bruit particulier	16,0	16,0	18,1	19,9	21,0	21,4	21,4	
(Nord/Ouest)	Bruit résiduel	40,0	42,0	44,0	45,0	47,0	49,5	53,0	
ZER 8	Bruit mesuré	41,0	41,0	41,5	42,0	43,0	44,0	47,0	
Goyencourt	Bruit particulier	10,2	10,2	12,3	13,7	14,8	15,1	15,3	
(Ouest)	Bruit résiduel	41,0	41,0	41,5	42,0	43,0	44,0	47,0	
	Bruit mesuré	39,0	39,0	39,5	39,5	40,0	41,0	42,0	
ZER 9 Damery	Bruit particulier	8,3	8,3	10,4	11,7	12,7	12,9	13,2	
Damery	Bruit résiduel	39,0	39,0	39,5	39,5	40,0	41,0	42,0	

JLBi Conseils – n°2217-3A – février 2020 Page 23 sur 107

Situation		Période diurne : Niveaux en dB(A)								
	1 x E92 108m		Vitesse du vent en m/s à h = 10 m							
	Bridée à 2MW	3 m/s	4 m/s	5 m/s	6 m/s	7 m/s	8 m/s	9 m/s		
ZER 10	Bruit mesuré	39,5	40,0	42,5	43,5	43,5	43,5	45,0		
Parvillers-Le-	Bruit particulier	8,6	8,6	10,7	12,0	13,0	13,3	13,5		
Quesnoy	Bruit résiduel	39,5	40,0	42,5	43,5	43,5	43,5	45,0		
	Bruit mesuré	37,5	38,0	38,5	41,0	46,0	47,5	49,5		
ZER 11 La Chavatte	Bruit particulier	13,6	13,6	15,7	17,3	18,4	18,7	18,8		
	Bruit résiduel	37,5	38,0	38,5	41,0	46,0	47,5	49,5		

Période nocturne :

			P	ériode noct	turne : Nive	aux en dB(/	4)	
Situation	1 x E92 108m			Vitesse du	vent en m/s	à h = 10 m	ı	
	Bridée à 2MW	3 m/s	4 m/s	5 m/s	6 m/s	7 m/s	8 m/s	9 m/s
ZER 1	Bruit mesuré	34,0	35,0	35,5	36,5	40,5	42,0	43,0
Liancourt-	Bruit particulier	21,6	21,6	23,7	25,7	26,9	27,3	27,3
fosse	Bruit résiduel	33,5	35,0	35,0	36,0	40,5	42,0	43,0
	Bruit mesuré	35,0	37,0	37,0	40,0	43,0	45,0	46,5
ZER 2 Crémery	Bruit particulier	17,9	17,9	20,0	21,8	23,0	23,3	23,4
Oremery	Bruit résiduel	35,0	37,0	37,0	40,0	43,0	45,0	46,5
ZER 3	Bruit mesuré	40,0	40,0	40,5	42,0	45,5	46,0	46,5
Gruny	Bruit particulier	17,2	17,2	19,3	21,1	22,2	22,6	22,6
(Ouest)	Bruit résiduel	40,0	40,0	40,5	42,0	45,5	46,0	46,5
	Bruit mesuré	42,5	43,0	43,0	44,5	47,5	47,5	48,5
ZER 4 Roye	Bruit particulier	8,4	8,4	10,5	11,8	12,8	13,0	13,3
Noye	Bruit résiduel	42,5	43,0	43,0	44,5	47,5	47,5	48,5
ZER 5	Bruit mesuré	40,0	40,5	42,0	47,0	51,5	54,0	55,0
Goyencourt	Bruit particulier	11,2	11,2	13,3	14,7	15,8	16,1	16,3
(Est)	Bruit résiduel	40,0	40,5	42,0	47,0	51,5	54,0	55,0
ZER 6	Bruit mesuré	40,0	43,5	45,5	50,5	54,5	56,0	57,0
Fresnoy-Les-	Bruit particulier	18,4	18,4	20,5	22,3	23,5	23,8	23,9
Roye (Sud/Est)	Bruit résiduel	40,0	43,5	45,5	50,5	54,5	56,0	57,0
ZER 7	Bruit mesuré	35,0	36,0	38,0	43,0	46,5	49,5	50,5
Fresnoy-Les- Rove	Bruit particulier	16,0	16,0	18,1	19,9	21,0	21,4	21,4
(Nord/Ouest)	Bruit résiduel	35,0	36,0	38,0	43,0	46,5	49,5	50,5
ZER 8	Bruit mesuré	34,0	35,0	35,0	35,5	39,0	39,5	40,5
Goyencourt	Bruit particulier	10,2	10,2	12,3	13,7	14,8	15,1	15,3
(Ouest)	Bruit résiduel	34,0	35,0	35,0	35,5	39,0	39,5	40,5
	Bruit mesuré	32,5	32,5	33,5	34,0	37,0	37,0	38,0
ZER 9 Damery	Bruit particulier	8,3	8,3	10,4	11,7	12,7	12,9	13,2
Damery	Bruit résiduel	32,5	32,5	33,5	34,0	37,0	37,0	38,0
ZER 10	Bruit mesuré	27,0	29,5	31,0	34,0	35,5	39,0	40,0
Parvillers-Le-	Bruit particulier	8,6	8,6	10,7	12,0	13,0	13,3	13,5
Quesnoy	Bruit résiduel	27,0	29,5	31,0	34,0	35,5	39,0	40,0
	Bruit mesuré	33,0	33,5	35,0	39,5	44,5	46,5	47,5
ZER 11 La Chavatte	Bruit particulier	13,6	13,6	15,7	17,3	18,4	18,7	18,8
La Chavatte	Bruit résiduel	33,0	33,5	35,0	39,5	44,5	46,5	47,5

JLBi Conseils – n°2217-3A – février 2020 Page 24 sur 107

^{*} soustraction logarithmique

6.1.2 Niveaux de bruit résiduel retenus

Les tableaux suivants présentent les niveaux de bruit résiduel retenus (parc éolien de Liancourt à l'arrêt) :

Tous les niveaux sonores sont exprimés en dB(A) et arrondis à 0,5 dB(A) près.

	Dáriada direra		Indicateur de niveau de bruit résiduel - L ₅₀ ,C,V en dB(A)							
	Période diurne	Vitesse du vent - Vs en m/s à h = 10m								
ZER	Situation	3 m/s	3 m/s 4 m/s 5 m/s 6 m/s 7 m/s 8 m/s 9 m/s							
1	Liancourt-fosse	42,5	43,0	44,5	45,0	46,0	47,5	50,5		
2	Crémery	42,0	42,5	42,5	43,0	43,5	45,5	49,5		
3	Gruny (Ouest)	51,5	52,0	52,0	52,5	54,5	55,5	57,5		
4	Roye	49,0	49,0	49,5	49,5	50,5	52,0	54,5		
5	Goyencourt (Est)	42,0	43,5	46,0	47,0	52,5	55,0	58,0		
6	Fresnoy-Les-Roye (Sud/Est)	45,0	47,0	50,0	52,0	55,5	58,5	60,5		
7	Fresnoy-Les-Roye (Nord/Ouest)	40,0	42,0	44,0	45,0	47,0	49,5	53,0		
8	Goyencourt (Ouest)	41,0	41,0	41,5	42,0	43,0	44,0	47,0		
9	Damery	39,0	39,0	39,5	39,5	40,0	41,0	42,0		
10	Parvillers-Le-Quesnoy	39,5	40,0	42,5	43,5	43,5	43,5	45,0		
11	La Chavatte	37,5	38,0	38,5	41,0	46,0	47,5	49,5		

	Désir de martinue		Indicateur	de niveau	de bruit rés	iduel - L ₅₀ ,C	,V en dB(A))		
	Période nocturne	Vitesse du vent - Vs en m/s à h = 10m								
ZER	Situation	3 m/s	4 m/s	5 m/s	6 m/s	7 m/s	8 m/s	9 m/s		
1	Liancourt-fosse	33,5	35,0	35,0	36,0	40,5	42,0	43,0		
2	Crémery	35,0	37,0	37,0	40,0	43,0	45,0	46,5		
3	Gruny (Ouest)	40,0	40,0	40,5	42,0	45,5	46,0	46,5		
4	Roye	42,5	43,0	43,0	44,5	47,5	47,5	48,5		
5	Goyencourt (Est)	40,0	40,5	42,0	47,0	51,5	54,0	55,0		
6	Fresnoy-Les-Roye (Sud/Est)	40,0	43,5	45,5	50,5	54,5	56,0	57,0		
7	Fresnoy-Les-Roye (Nord/Ouest)	35,0	36,0	38,0	43,0	46,5	49,5	50,5		
8	Goyencourt (Ouest)	34,0	35,0	35,0	35,5	39,0	39,5	40,5		
9	Damery	32,5	32,5	33,5	34,0	37,0	37,0	38,0		
10	Parvillers-Le-Quesnoy	27,0	29,5	31,0	34,0	35,5	39,0	40,0		
11	La Chavatte	33,0	33,5	35,0	39,5	44,5	46,5	47,5		

JLBi Conseils – n°2217-3A – février 2020 Page 25 sur 107

6.2 Etude acoustique prévisionnelle

A l'aide du logiciel CadnaA, nous modélisons le site compte tenu de sa topographie, des habitations existantes et de l'implantation des éoliennes.

Le calcul du niveau de bruit particulier généré est réalisé à partir de 6 éoliennes de type V150 avec STE – Mode 0 – hauteur de moyeu 125m

La carte de bruit relatant le niveau sonore particulier est reportée en annexe. Rappelons que tous les calculs sont réalisés selon la norme ISO 9613-2.

Nous retraçons dans les tableaux ci-après, pour les périodes diurne et nocturne, pour des vitesses de vent de 3 à 9 m/s standardisées à 10 mètres et pour l'ensemble des hameaux les plus proches situés tout autour du projet :

- l'indicateur de niveau de bruit résiduel issu de la campagne de mesurage in situ,
- la contribution acoustique prévisionnelle générée par les éoliennes et issue du calcul effectué sous CadnaA;
- le niveau de bruit ambiant prévisionnel, qui est la somme du bruit résiduel et du bruit particulier,
- l'émergence du bruit ambiant prévisionnel en regard du bruit résiduel mesuré.

Le nombre et la localisation des récepteurs permettent de présenter une évaluation de l'impact acoustique dans les zones à émergences règlementées susceptibles d'être impactées par le projet. Les récepteurs sont constitués des points où les mesures ont été réalisées.

Les niveaux de bruit résiduel et les émergences sont arrondis au $\frac{1}{2}$ dB(A) le plus proche. Les contributions sonores et les niveaux de bruit ambiant sont arrondis à 0,1 dB(A) près. Tous les niveaux sonores sont exprimés en dB(A).

JLBi Conseils – n°2217-3A – février 2020 Page 26 sur 107

Période diurne :

				Période diu	rne : Nivea	ux en dB(A))	
Situation	6 x V150 4,0MW 125m			Vitesse du	vent en m/s	s à h = 10 m		
Oltuation	Mode 0	3 m/s	4 m/s	5 m/s	6 m/s	7 m/s	8 m/s	9 m/s
	Bruit résiduel	42,5	43,0	44,5	45,0	46,0	47,5	50,5
ZER 1 Liancourt-	Bruit particulier	24,0	27,8	33,3	36,6	36,8	36,8	36,9
fosse	Bruit ambiant	42,6	43,1	44,8	45,6	46,5	47,9	50,7
	Emergence	0,0	0,0	0,5	0,5	0,5	0,5	0,0
	Bruit résiduel	42,0	42,5	42,5	43,0	43,5	45,5	49,5
ZER 2	Bruit particulier	21,5	25,3	30,7	34,0	34,3	34,3	34,3
Crémery	Bruit ambiant	42,0	42,6	42,8	43,5	44,0	45,8	49,6
	Emergence	0,0	0,0	0,5	0,5	0,5	0,5	0,0
	Bruit résiduel	51,5	52,0	52,0	52,5	54,5	55,5	57,5
ZER 3 Gruny	Bruit particulier	23,5	27,3	32,8	36,1	36,3	36,3	36,4
(Ouest)	Bruit ambiant	51,5	52,0	52,1	52,6	54,6	55,6	57,5
,	Emergence	0,0	0,0	0,0	0,0	0,0	0,0	0,0
	Bruit résiduel	49,0	49,0	49,5	49,5	50,5	52,0	54,5
ZER 4	Bruit particulier	9,8	13,7	19,2	22,5	22,7	22,7	22,8
Roye	Bruit ambiant	49,0	49,0	49,5	49,5	50,5	52,0	54,5
	Emergence	0,0	0,0	0,0	0,0	0,0	0,0	0,0
	Bruit résiduel	42,0	43,5	46,0	47,0	52,5	55,0	58,0
ZER 5	Bruit particulier	15,2	19,0	24,5	27,8	28,0	28,0	28,1
Goyencourt (Est)	Bruit ambiant	42,0	43,5	46,0	47,1	52,5	55,0	58,0
,	Emergence	0,0	0,0	0,0	0,0	0,0	0,0	0,0
	Bruit résiduel	45,0	47,0	50,0	52,0	55,5	58,5	60,5
ZER 6 Fresnoy-Les-	Bruit particulier	18,6	22,4	27,9	31,2	31,4	31,4	31,4
Roye (Sud/Est)	Bruit ambiant	45,0	47,0	50,0	52,0	55,5	58,5	60,5
	Emergence	0,0	0,0	0,0	0,0	0,0	0,0	0,0
ZER 7	Bruit résiduel	40,0	42,0	44,0	45,0	47,0	49,5	53,0
Fresnoy-Les-	Bruit particulier	23,6	27,4	32,9	36,2	36,4	36,4	36,4
Roye (Nord/Ouest)	Bruit ambiant	40,1	42,1	44,3	45,5	47,4	49,7	53,1
(Nord/Odest)	Emergence	0,0	0,0	0,5	0,5	0,5	0,0	0,0
	Bruit résiduel	41,0	41,0	41,5	42,0	43,0	44,0	47,0
ZER 8	Bruit particulier	16,9	20,7	26,2	29,5	29,8	29,8	29,8
Goyencourt (Ouest)	Bruit ambiant	41,0	41,0	41,6	42,2	43,2	44,2	47,1
	Emergence	0,0	0,0	0,0	0,0	0,0	0,0	0,0
	Bruit résiduel	39,0	39,0	39,5	39,5	40,0	41,0	42,0
ZER 9	Bruit particulier	18,2	22,0	27,4	30,8	31,0	31,0	31,0
Damery	Bruit ambiant	39,0	39,1	39,8	40,0	40,5	41,4	42,3
	Emergence	0,0	0,0	0,5	0,5	0,5	0,5	0,5

 JLBi Conseils – n°2217-3A – février 2020
 Page 27 sur 107
 JLBi Conseils – n°2217-3A – février 2020

		Période diurne : Niveaux en dB(A)								
Situation	6 x V150 4,0MW 125m	Vitesse du vent en m/s à h = 10 m								
	Mode 0	3 m/s	4 m/s	5 m/s	6 m/s	7 m/s	8 m/s	9 m/s		
	Bruit résiduel	39,5	40,0	42,5	43,5	43,5	43,5	45,0		
ZER 10 Parvillers-Le-	Bruit particulier	18,9	22,7	28,1	31,5	31,7	31,7	31,7		
Quesnoy	Bruit ambiant	39,5	40,1	42,7	43,8	43,8	43,8	45,2		
	Emergence	0,0	0,0	0,0	0,5	0,5	0,5	0,0		
	Bruit résiduel	37,5	38,0	38,5	41,0	46,0	47,5	49,5		
ZER 11	Bruit particulier	20,5	24,3	29,7	33,1	33,3	33,3	33,3		
La Chavatte	Bruit ambiant	37,6	38,2	39,0	41,7	46,2	47,7	49,6		
	Emergence	0,0	0,0	0,5	0,5	0,0	0,0	0,0		

Conformément à l'arrêté du 26 août 2011, l'émergence n'est recherchée que si le niveau de bruit ambiant est supérieur à 35 dB(A).

Période nocturne :

			F	Période noct	urne : Nive	aux en dB(A)	
Situation	6 x V150 4,0MW 125m			Vitesse du	vent en m/s	s à h = 10 m	ı	
	Mode 0	3 m/s	4 m/s	5 m/s	6 m/s	7 m/s	8 m/s	9 m/s
	Bruit résiduel	33,5	35,0	35,0	36,0	40,5	42,0	43,0
ZER 1	Bruit particulier	24,0	27,8	33,3	36,6	36,8	36,8	36,9
Liancourt- fosse	Bruit ambiant	34,0	35,8	37,2	39,3	42,0	43,1	44,0
	Emergence	$Amb \le 35dB(A)$	1,0	2,0	3,5	1,5	1,0	1,0
	Bruit résiduel	35,0	37,0	37,0	40,0	43,0	45,0	46,5
ZER 2	Bruit particulier	21,5	25,3	30,7	34,0	34,3	34,3	34,3
Crémery	Bruit ambiant	35,2	37,3	37,9	41,0	43,5	45,4	46,8
	Emergence	0,0	0,5	1,0	1,0	0,5	0,5	0,5
	Bruit résiduel	40,0	40,0	40,5	42,0	45,5	46,0	46,5
ZER 3 Gruny	Bruit particulier	23,5	27,3	32,8	36,1	36,3	36,3	36,4
(Ouest)	Bruit ambiant	40,1	40,2	41,2	43,0	46,0	46,4	46,9
	Emergence	0,0	0,0	0,5	1,0	0,5	0,5	0,5
	Bruit résiduel	42,5	43,0	43,0	44,5	47,5	47,5	48,5
ZER 4	Bruit particulier	9,8	13,7	19,2	22,5	22,7	22,7	22,8
Roye	Bruit ambiant	42,5	43,0	43,0	44,5	47,5	47,5	48,5
	Emergence	0,0	0,0	0,0	0,0	0,0	0,0	0,0
	Bruit résiduel	40,0	40,5	42,0	47,0	51,5	54,0	55,0
ZER 5 Govencourt	Bruit particulier	15,2	19,0	24,5	27,8	28,0	28,0	28,1
(Est)	Bruit ambiant	40,0	40,5	42,1	47,1	51,5	54,0	55,0
	Emergence	0,0	0,0	0,0	0,0	0,0	0,0	0,0
	Bruit résiduel	40,0	43,5	45,5	50,5	54,5	56,0	57,0
ZER 6 Fresnov-Les-	Bruit particulier	18,6	22,4	27,9	31,2	31,4	31,4	31,4
Roye (Sud/Est)	Bruit ambiant	40,0	43,5	45,6	50,6	54,5	56,0	57,0
	Emergence	0,0	0,0	0,0	0,0	0,0	0,0	0,0

			Р	ériode noct	urne : Nive	aux en dB(A	A)			
Situation	6 x V150 4,0MW 125m	Vitesse du vent en m/s à h = 10 m								
	Mode 0	3 m/s	4 m/s	5 m/s	6 m/s	7 m/s	8 m/s	9 m/s		
ZER 7	Bruit résiduel	35,0	36,0	38,0	43,0	46,5	49,5	50,5		
Fresnoy-Les- Roye	Bruit particulier	23,6	27,4	32,9	36,2	36,4	36,4	36,4		
	Bruit ambiant	35,3	36,6	39,2	43,8	46,9	49,7	50,7		
(Nord/Ouest)	Emergence	0,5	0,5	1,0	1,0	0,5	0,0	0,0		
	Bruit résiduel	34,0	35,0	35,0	35,5	39,0	39,5	40,5		
ZER 8	Bruit particulier	16,9	20,7	26,2	29,5	29,8	29,8	29,8		
Goyencourt (Ouest)	Bruit ambiant	34,1	35,2	35,5	36,5	39,5	39,9	40,9		
(0000)	Emergence	$Amb \le 35dB(A)$	0,0	0,5	1,0	0,5	0,5	0,5		
	Bruit résiduel	32,5	32,5	33,5	34,0	37,0	37,0	38,0		
ZER 9	Bruit particulier	18,2	22,0	27,4	30,8	31,0	31,0	31,0		
Damery	Bruit ambiant	32,7	32,9	34,5	35,7	38,0	38,0	38,8		
	Emergence	$Amb \le 35dB(A)$	$Amb \le 35dB(A)$	$Amb \le 35dB(A)$	1,5	1,0	1,0	1,0		
	Bruit résiduel	27,0	29,5	31,0	34,0	35,5	39,0	40,0		
ZER 10	Bruit particulier	18,9	22,7	28,1	31,5	31,7	31,7	31,7		
Parvillers-Le- Quesnov	Bruit ambiant	27,6	30,3	32,8	35,9	37,0	39,7	40,6		
,	Emergence	$Amb \le 35dB(A)$	$Amb \le 35dB(A)$	$Amb \le 35dB(A)$	2,0	1,5	0,5	0,5		
	Bruit résiduel	33,0	33,5	35,0	39,5	44,5	46,5	47,5		
ZER 11	Bruit particulier	20,5	24,3	29,7	33,1	33,3	33,3	33,3		
La Chavatte	Bruit ambiant	33,2	34,0	36,1	40,4	44,8	46,7	47,7		
	Emergence	$Amb \le 35dB(A)$	$Amb \le 35dB(A)$	1,0	1,0	0,5	0,0	0,0		

Conformément à l'arrêté du 26 août 2011, l'émergence n'est recherchée que si le niveau de bruit ambiant est supérieur à 35 dB(A).

Analyse:

- Période diurne : conformité pour les classes de vitesses de vent standardisées à 10 mètres de hauteur de 3 à 9m/s.
- Période nocturne : risques de non-conformités pour la ZER 1 à 6m/s.

JLBi Conseils – n°2217-3A – février 2020 Page 29 sur 107

ENERTRAG - Projet éolien Sucrerie (80) - Etude d'impact acoustique

6.3 Mode de gestion du fonctionnement du parc

Au vu des résultats prévisionnels, un plan de fonctionnement adapté au site, en **période nocturne** uniquement, est proposé afin de maîtriser les risques de franchissement des seuils réglementaires.

Les éoliennes peuvent fonctionner suivant différents modes. Chaque mode de fonctionnement définit un ensemble de paramétrages de la machine (calage des pales, courbe de puissance du générateur, vitesse de rotation du rotor), en fonction de la vitesse du vent. Ces paramètres font varier la puissance acoustique de la machine. Les caractéristiques des machines ainsi que leurs plans de fonctionnement sont amenés à évoluer entre la présente étude et la mise en fonctionnement du parc. Des améliorations acoustiques notables seront donc potentiellement disponibles à la date de construction, et une réception acoustique sera réalisée durant l'année suivant la mise en service afin de vérifier la conformité acoustique du parc éolien.

Les niveaux de puissances acoustiques sont définis aux classes de vitesses de vent entières standardisées à 10 m, tous les niveaux sont exprimés en dB(A).

Les puissances acoustiques globales et spectrales des modes de bridage utilisées pour les calculs proviennent de la documentation du constructeur VESTAS transmise par ENERTRAG (documents disponibles en annexe) : Document ID : 0067-7067 V09 en date du 25 septembre 2018.

Les niveaux de puissances acoustiques sont standardisés à 10 m, tous les niveaux sont exprimés en dB(A)

Puissances acoustiques des modes de bridage de la V150 4,0MW – 125m										
Vs 10 m	3 m/s	4 m/s	5 m/s	6 m/s	7 m/s	8 m/s	9 m/s et >			
Mode 0	92,1	95,9	101,4	104,7	104,9	104,9	104,9			
Mode S01	92,1	95,9	101,1	103,2	103,3	103,3	103,4			
Mode S02	92,1	95,9	100,8	102,0	102,0	102,0	102,0			
Mode S03	92,1	95,9	99,5	99,5	99,5	99,5	99,5			

Avec la totalité des éoliennes du projet Sucrerie fonctionnant en mode nominal (Mode 0s) les résultats sont présentés dans les tableaux suivants :

Les résultats des calculs d'émergence sont arrondis au ½ dB(A) le plus proche et tous les niveaux sonores sont exprimés en dB(A).

En considérant les modes de bridage disponibles, le plan de fonctionnement suivant permet de maîtriser les émergences non conformes évaluées en période nocturne.

	Plan de Fonctionnement nocturne											
	3 m/s	4 m/s	5 m/s	6 m/s	7 m/s	8 m/s	9 m/s					
S1	Mode 0	Mode 0	Mode 0	Mode 0	Mode 0	Mode 0	Mode 0					
S2	Mode 0	Mode 0	Mode 0	Mode 0	Mode 0	Mode 0	Mode 0					
S3	Mode 0	Mode 0	Mode 0	Mode 0	Mode 0	Mode 0	Mode 0					
S4	Mode 0	Mode 0	Mode 0	Mode S01	Mode 0	Mode 0	Mode 0					
S5	Mode 0	Mode 0	Mode 0	Mode 0	Mode 0	Mode 0	Mode 0					
S6	Mode 0	Mode 0	Mode 0	Mode 0	Mode 0	Mode 0	Mode 0					

Rappel : En période diurne, les éoliennes fonctionnent en Mode 0.

JLBi Conseils – n°2217-3A – février 2020 Page 30 sur 107

En appliquant le plan de fonctionnement décrit ci-dessus les résultats prévisionnels sont présentés dans les tableaux suivants :

			Р	ériode noct	urne : Nive	aux en dB(/	A)	
Situation	6 x V150 4,0MW 125m			Vitesse du	vent en m/s	s à h = 10 m	l	
Oltuation	Plan de fonctionnement	3 m/s	4 m/s	5 m/s	6 m/s	7 m/s	8 m/s	9 m/s
	Bruit résiduel	33,5	35,0	35,0	36,0	40,5	42,0	43,0
ZER 1	Bruit particulier	24,0	27,8	33,3	35,6	36,8	36,8	36,9
Liancourt- fosse	Bruit ambiant	34,0	35,8	37,2	38,8	42,0	43,1	44,0
	Emergence	<i>Amb</i> ≤ 35dB(A)	1,0	2,0	3,0	1,5	1,0	1,0
	Bruit résiduel	35,0	37,0	37,0	40,0	43,0	45,0	46,5
ZER 2	Bruit particulier	21,5	25,3	30,7	33,6	34,3	34,3	34,3
Crémery	Bruit ambiant	35,2	37,3	37,9	40,9	43,5	45,4	46,8
	Emergence	0,0	0,5	1,0	1,0	0,5	0,5	0,5
	Bruit résiduel	40,0	40,0	40,5	42,0	45,5	46,0	46,5
ZER 3	Bruit particulier	23,5	27,3	32,8	36,1	36,3	36,3	36,4
Gruny (Ouest)	Bruit ambiant	40,1	40,2	41,2	43,0	46,0	46,4	46,9
	Emergence	0,0	0,0	0,5	1,0	0,5	0,5	0,5
	Bruit résiduel	42,5	43,0	43,0	44,5	47,5	47,5	48,5
ZER 4	Bruit particulier	9,8	13,7	19,2	22,8	22,7	22,7	22,8
Roye	Bruit ambiant	42,5	43,0	43,0	44,5	47,5	47,5	48,5
	Emergence	0,0	0,0	0,0	0,0	0,0	0,0	0,0
	Bruit résiduel	40,0	40,5	42,0	47,0	51,5	54,0	55,0
ZER 5 Goyencourt	Bruit particulier	15,2	19,0	24,5	27,9	28,0	28,0	28,1
(Est)	Bruit ambiant	40,0	40,5	42,1	47,1	51,5	54,0	55,0
	Emergence	0,0	0,0	0,0	0,0	0,0	0,0	0,0
	Bruit résiduel	40,0	43,5	45,5	50,5	54,5	56,0	57,0
ZER 6 Fresnoy-Les-	Bruit particulier	18,6	22,4	27,9	31,2	31,4	31,4	31,4
Roye (Sud/Est)	Bruit ambiant	40,0	43,5	45,6	50,6	54,5	56,0	57,0
	Emergence	0,0	0,0	0,0	0,0	0,0	0,0	0,0
ZER 7	Bruit résiduel	35,0	36,0	38,0	43,0	46,5	49,5	50,5
Fresnoy-Les-	Bruit particulier	23,6	27,4	32,9	36,2	36,4	36,4	36,4
Roye (Nord/Ouest)	Bruit ambiant	35,3	36,6	39,2	43,8	46,9	49,7	50,7
(North Gudde)	Emergence	0,5	0,5	1,0	1,0	0,5	0,0	0,0
	Bruit résiduel	34,0	35,0	35,0	35,5	39,0	39,5	40,5
ZER 8 Goyencourt	Bruit particulier	16,9	20,7	26,2	29,6	29,8	29,8	29,8
(Ouest)	Bruit ambiant	34,1	35,2	35,5	36,5	39,5	39,9	40,9
	Emergence	$Amb \le 35dB(A)$	0,0	0,5	1,0	0,5	0,5	0,5
	Bruit résiduel	32,5	32,5	33,5	34,0	37,0	37,0	38,0
ZER 9	Bruit particulier	18,2	22,0	27,4	30,8	31,0	31,0	31,0
Damery	Bruit ambiant	32,7	32,9	34,5	35,7	38,0	38,0	38,8
	Emergence	Amb ≤ 35dB(A)	Amb ≤ 35dB(A)	Amb ≤ 35dB(A)	1,5	1,0	1,0	1,0

JLBi Conseils – n°2217-3A – février 2020 Page 31 sur 107

ENERTRAG – Projet éolien Sucrerie (80) – Etude d'impact acoustique

	C = V450 4 0MW	Période nocturne : Niveaux en dB(A)								
Situation	6 x V150 4,0MW 125m Plan de	Vitesse du vent en m/s à h = 10 m								
	fonctionnement	3 m/s	4 m/s	5 m/s	6 m/s	7 m/s	8 m/s	9 m/s		
	Bruit résiduel	27,0	29,5	31,0	34,0	35,5	39,0	40,0		
ZER 10	Bruit particulier	18,9	22,7	28,1	31,5	31,7	31,7	31,7		
Parvillers-Le- Quesnoy	Bruit ambiant	27,6	30,3	32,8	35,9	37,0	39,7	40,6		
Quocincy	Emergence	$Amb \le 35dB(A)$	<i>Amb</i> ≤ 35dB(A)	$Amb \le 35dB(A)$	2,0	1,5	0,5	0,5		
	Bruit résiduel	33,0	33,5	35,0	39,5	44,5	46,5	47,5		
ZER 11	Bruit particulier	20,5	24,3	29,7	33,0	33,3	33,3	33,3		
La Chavatte	Bruit ambiant	33,2	34,0	36,1	40,4	44,8	46,7	47,7		
	Emergence	<i>Amb</i> ≤ 35dB(A)	Amb ≤ 35dB(A)	1,0	1,0	0,5	0,0	0,0		

Conformément à l'arrêté du 26 août 2011, l'émergence n'est recherchée que si le niveau de bruit ambiant est supérieur à 35 dB(A).

Analyse

Les émergences prévisionnelles sont conformes en appliquant le plan de fonctionnement proposé.

JLBi Conseils – n°2217-3A – février 2020 Page 32 sur 107

6.4 Niveau de bruit maximal en limite du périmètre de l'installation

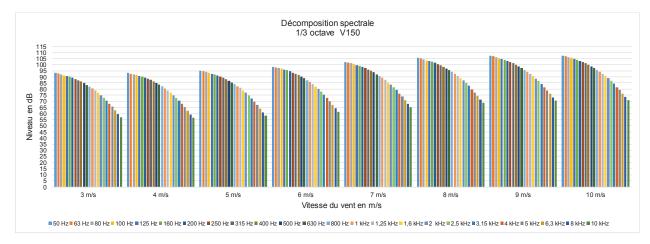
Le périmètre de l'installation a été défini à une distance R = 240 mètres des éoliennes. $R = 1.2 \times (hauteur\ de\ moyeu + longueur\ d'un\ demi-rotor) = 1.2 *(125 + 150/2) = 240\ m$

A l'aide du logiciel CadnaA, la contribution sonore en limite de site de l'installation a été évaluée pour une vitesse de vent de 9 m/s en périodes diurne et nocturne en **Mode 0** (puissance maximale des éoliennes qui produisent le niveau sonore maximal).

La figure ci-après illustre les niveaux sonores à l'intérieur du périmètre de mesure du bruit de l'installation pour un vent portant dans toutes les directions.

Analyse:

Au regard des graduations des surfaces isophones, les contributions sonores en limite du périmètre ICPE ne dépassent jamais les 50dB(A). Pour atteindre les limites fixées à 70dB(A) le jour et 60dB(A) la nuit il faudrait des niveaux de bruit résiduel égal à 70dB(A) le jour et 60dB(A) la nuit. Comme aucune valeur de résiduel relevée en ZER n'atteint ces niveaux-là, les niveaux en limite de site resteront forcément en deçà des limites fixées par la règlementation.


Les niveaux sonores prévisionnels en limite de périmètre ICPE sont conformes en périodes diurne et nocturne.

JLBi Conseils – n°2217-3A – février 2020 Page 33 sur 107

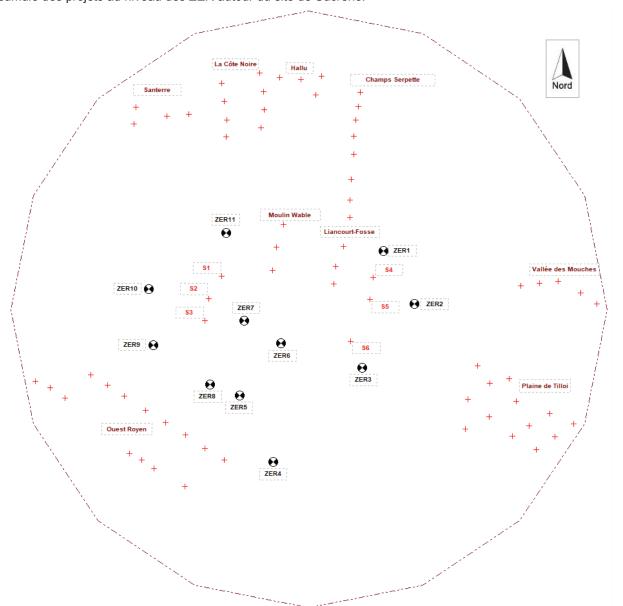
ENERTRAG - Projet éolien Sucrerie (80) - Etude d'impact acoustique

6.5 Tonalité marquée

Dans le cadre d'une étude prévisionnelle, les données disponibles ne permettent pas d'évaluer une tonalité marquée. Toutefois l'analyse du profil spectral 1/3 d'octave des turbines à l'émission permet de déceler d'éventuels risques.

L'analyse de l'ensemble des spectres à l'émission du Mode 0 de l'éolienne VESTAS V150 4,0MW, ne met pas en évidence de tonalité marquée. Aucune bande de 1/3 d'octave émergeante de plus de 5 ou 10 dB par rapport aux 4 bandes adjacentes n'est détectée.

<u>Commentaire</u>: En considérant qu'aucune tonalité marquée n'apparait dans les spectres à l'émission de ces turbines, les différents phénomènes d'atténuations susceptibles de déformer le spectre (absorption atmosphérique, divergence géométrique, effet du sol) ne suffiront pas à provoquer l'apparition de ce phénomène en réception dans les 11 ZER considérées.


JLBi Conseils – n°2217-3A – février 2020 Page 34 sur 107

7 Impacts cumulés

Ce paragraphe a pour objet d'évaluer, dans les 11 ZER, la contribution prévisionnelle du projet de parc éolien de Sucrerie, en considérant la mise en fonctionnement des parcs et projets éoliens suivants :

- Le parc éolien de Liancourt en fonctionnement,
- Le projet éolien de Moulin Wable en fonctionnement,
- Le parc éolien de Ouest Royen en fonctionnement,
- Le projet éolien de Champ Serpette en instruction,
- Le projet éolien d'Hallu autorisé,
- Le parc éolien de la Côte Noire en fonctionnement
- Le parc éolien de la Plaine de Tilloi en fonctionnement,
- Le projet éolien de Santerre autorisé,
- Le projet éolien de la Vallée des Mouches en instruction.

La carte suivante présente la position des différentes turbines prises en considération pour le calcul de l'impact cumulé des projets au niveau des ZER autour du site de Sucrerie.

NB : Les autres parcs et projets éoliens indiqués sur la carte ci-dessus n'ont pas d'impact sonore sur les ZER concernées par l'étude d'impact du parc de Sucrerie.

JLBi Conseils – n°2217-3A – février 2020 Page 35 sur 107

ENERTRAG - Projet éolien Sucrerie (80) - Etude d'impact acoustique

7.1 Paramètres de calculs

Le tableau suivant présente les modes de fonctionnement des projets suscités :

Parc éolien	Eolienne	Période diurne	Période nocturne
Projet de Sucrerie	(6 x) V150 – 125m	Mode Normal avec STE	Mode Normal avec STE
Parc de Liancourt-Fosse	(3 x) E-92 – 108m	Mode Bridé 2MW	Mode Bridé 2MW
Projet de Moulin Wable	(3x) E-103 – 98m	Mode Normal avec STE	Mode Normal avec STE
Parc de Ouest Royen	(15 x) GE103-85 – 88,5m	Mode Normal	Mode Normal
Projet de Champ Serpette	(8 x) V117 – 91,5m	Mode Normal avec STE	Mode Normal avec STE
Projet d'Hallu	(4 x) V100 – 100m	Mode Normal – 2MW	Mode Normal – 2MW
Parc de la Côte Noire	(8 x) V117 – 80m	Mode Normal – 3,45 MW	Mode Normal – 3,45 MW
Parc de la Plaine de Tilloi	(13 x) E82 – 99m	Mode Normal – 2,3 MW	Mode Normal – 2,3 MW
Projet de Santerre	(4 x) V90 – 80m	Mode Normal – 2 MW	Mode Normal – 2 MW
Projet La Vallée des Mouches	(5 x) SWT130 – 115 m	Mode Normal – 4,3 MW	Mode Normal – 4,3 MW

Le calcul du niveau de bruit particulier généré est réalisé en considérant :

- 3 éoliennes ENERCON E-92 / 2300 kW bridée à 2000 kW de 108m de hauteur de moyeu pour le parc éolien de Liancourt ;
- 3 éoliennes ENERCON E-103 / 2350 kW avec serration (STE) de 98m de hauteur de moyeu pour le projet éolien de Moulin Wable.
- 15 éoliennes GE ENERGY GE103-85 de 88,5m de hauteur de moyeu pour le parc éolien de Ouest Royen.
- 8 éoliennes VESTAS V117 3,45MW avec serration (STE) de 91,5m de hauteur de moyeu pour le projet éolien de Champ Serpette.
- 4 éoliennes VESTAS V100 2MW de 100m de hauteur de moyeu pour le projet éolien d'Hallu.
- 8 éoliennes VESTAS V117 3,45MW de 80m de hauteur de moyeu pour le parc éolien de la Côte Noire.
- 13 éoliennes ENERCON E82 2,3MW de 99m de hauteur de moyeu pour le parc éolien de la Plaine de Tilloi
- 4 éoliennes VESTAS V90 2MW de 80m de hauteur de moyeu pour le projet éolien de Santerre.
- 5 éoliennes SIEMENS SWT130 4,3MW de 115m de hauteur de moyeu pour le projet éolien de la Vallée des Mouches.

JLBi Conseils – n°2217-3A – février 2020 Page 36 sur 107

Puissance acoustique des éoliennes

Les puissances acoustiques globales et spectrales des modes utilisées pour les calculs proviennent de la documentation constructeur transmise par ENERTRAG (voir extrait en annexe) :

Puissances acoustiques globales

Elles sont standardisées à 10 mètres de hauteur.

E92 → Document ID : RA-120124-01-A en date du 11 mai 2012.

E103 → Document ID : D0439125-3 / DA en date du 06 décembre 2016.

GE103-85 → Document ID : Noise_Emissions-NO_2x-DFIG-103-xxHz_3MW_EN_r02.docx daté de 2016

V117 → Document ID : 0053-3711 V05 en date du 20 octobre 2016 et Document ID : 0055-1397_02_02 en date

du 30 novembre 2016

V110 \rightarrow Document ID : 0051-2906_02 en date du 07 mars 2016 V90 \rightarrow Document ID : 0069-8061_00 en date du 04 octobre 2017

E82 → Document ID : RA04-SPL E-82 OMI 2,3MW en date de janvier 2013.

SWT 130 → Document ID : E W-30-0000-2439-08 en date du 06 mars 2018

	Puissances acoustiques globales de la E92 / 2300 kW – mât de 108 m <u>Mode 1 – Lw en dB(A)</u>									
Vs (m/s)	Vs (m/s) 3* 4* 5 6 7 8 9									
Lw (dBA)	98,0	98,0	100,1	102,3	103,5	104,5	105,0			

^{*} Aucune puissance n'est donnée pour les classes de vitesses de vent de 3 et 4 m/s. Sur la base d'une extrapolation, le delta existant entre 5 et 6 m/s (environ 2 dB(A)) est utilisé pour calculer la puissance acoustique à 3 et 4 m/s (approche conservatrice).

	Puissances acoustiques globales de la E103 / 2350 kW avec STE – mât de 98 m <u>Mode 0s – Lw en dB(A)</u>										
Vs (m/s)	3	4	5	6	7	8	9				
Lw (dBA)	91,0	96,3	101,1	103,5	104,4	105,0	105,0				

	Puissances acoustiques globales de la GE103-85 3000 KW – mât de 88,5 m <u>Mode Normal Operation – Lw en dB(A)</u>										
Vs (m/s) 3 4 5 6 7 8 9											
Lw (dBA) 95,9 98,6 102,0 104,3 105,0 105,0 105,0											

	Puissance	es acoustiques		V117 3,45MW a .w en dB(A)	avec STE – mâ	t de 91,5 m						
Vs (m/s)	3	4	5	6	7	8	9					
Lw (dBA)	Lw (dBA) 92,6 96,2 100,8 104,9 106,7 106,8 106,8											

	Puiss	ances acoustic		de la V110 / 200 <u>₋w en dB(A)</u>	00 kW – mât de	100 m	
Vs (m/s)	3	4	5	6	7	8	9
Lw (dBA)	94,3	97,6	101,1	104,2	105	105	105

JLBi Conseils – n°2217-3A – février 2020 Page 37 sur 107

	Puiss	sances acousti		de la V117 / 34! .w en dB(A)	50 kW – mât de	80 m	
Vs (m/s)	3	4	5	6	7	8	9
Lw (dBA)	94	98,1	103	107	109,1	109,3	109,3

	Puis	sances acoust		de la V90 / 200 .w en dB(A)	0 kW – mât de	80 m	
Vs (m/s)	3	4	5	6	7	8	9
Lw (dBA)	92,8	95,8	100,1	102,7	103,6	103,7	103,7

Puissances acoustiques globales de la E-82 / 2300 kW – mât de 99 m <u>Mode 0MI – Lw en dB(A)</u>										
Vs (m/s)	3	4	5	6	7	8	9			
Lw (dBA) / / 97,2 101,6 103,6 104 104										

	Puissar	ices acoustiqu	_	la SWT 130 / 4: .w en dB(A)	300 kW – mât c	le 115 m						
Vs (m/s)	Vs (m/s) 3 4 5 6 7 8 9											
Lw (dBA)	Lw (dBA) 96,3 98,1 103,2 106,6 107 107 107											

Puissances acoustiques spectrales

Les puissances acoustiques spectrales en bande d'octave ci-dessous ont été calculées à partir des valeurs données en tiers d'octave par le constructeur. Elles sont standardisées à 10 mètres de hauteur.

	Puissances acoustiques spectrales de la E92 / 2300 kW – mât de 108 m <u>Mode 1 – Lw en dB</u>											
Vs (m/s)	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz				
3	108,9	105,9	98,9	95,6	92,4	85,1	72,7	74,0				
4	108,9	105,9	98,9	95,6	92,4	85,1	72,7	74,0				
5	111,0	108,0	101,0	97,7	94,5	87,2	74,8	76,1				
6	111,7	108,3	102,2	100,4	97,6	89,7	76,5	78,2				
7	111,5	109,8	103,6	101,6	98,7	91,4	78,5	76,4				
8	111,5	110,0	103,9	102,0	99,3	92,0	79,2	75,3				
9	112,3	111,3	103,4	101,0	99,4	93,5	81,2	75,1				

JLBi Conseils – n°2217-3A – février 2020 Page 38 sur 107

	Puissances acoustiques spectrales de la E103 / 2350 kW avec STE – mât de 98 m <u>Mode 0s – Lw en dB</u>										
Vs (m/s)	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz			
3	100,6	96,8	91,9	88,4	84,7	82,0	74,9	59,5			
4	105,4	101,7	96,8	93,7	90,4	87,4	80,7	65,7			
5	109,6	106,1	101,2	98,4	95,6	92,4	85,7	71,4			
6	111,5	108,2	103,4	101,0	98,2	94,6	87,8	73,8			
7	111,9	108,7	104,2	102,1	99,2	95,1	88,0	74,2			
8	112,9	109,6	104,9	102,3	99,7	96,3	89,6	75,8			
9	113,5	110,1	105,0	101,6	99,5	97,0	90,6	76,5			

	Puissances acoustiques globales de la GE103-85 3000 KW – mât de 88,5 m <u>Mode Normal Operation – Lw en dB(A)</u>										
Vs (m/s)	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz			
3	76,3	83,9	87,1	88,2	90,3	90,6	82,2	62,5			
4	78,7	86,6	90,1	90,7	92,4	93,6	86,8	65,9			
5	82,5	90,2	93,6	94,6	95,7	96,5	90,7	71,2			
6	85,3	92,7	95,7	97,2	98,3	98,4	92,8	74,1			
7	86,2	93,6	96	97,7	99,3	99,2	93,3	74,3			
8	86,1	93,6	95,7	97,3	99,5	99,4	93,1	73,5			
9	85,9	93,4	95,3	96,8	99,9	99,7	92,1	72,5			

	Puissances acoustiques globales de la V117 3,45MW avec STE – mât de 91,5 m <u>Mode 0 – Lw en dB(A)</u>										
Vs (m/s)	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz			
3	75,0	82,6	86,7	85,6	83,4	85,0	83,3	74,1			
4	78,3	85,9	89,8	89,6	88,3	88,5	86,0	76,1			
5	82,8	90,3	93,8	94,4	94,0	93,0	89,8	79,2			
6	86,8	94,2	97,4	98,6	99,0	97,0	93,2	82,1			
7	88,2	95,8	98,9	100,6	101,1	98,5	94,5	83,2			
8	89,1	96,1	98,9	100,4	101,1	98,9	95,0	84,0			
9	90,3	96,4	98,7	100,1	100,9	99,2	95,6	85,2			

	Puissances acoustiques globales de la V110 2MW– mât de 100 m <u>Mode 0 – Lw en dB</u>											
Vs (m/s)	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz				
3	99,6	97,1	94,9	91,8	88,9	85,9	78,7	67,9				
4	102,3	100,2	98,6	95,4	92,1	88,6	81,2	71,5				
5	105,5	103,6	102,1	99	95,6	92	84,5	75,1				
6	108,5	106,6	105,1	102,2	98,8	95,2	87,6	78,3				
7	109,7	107,3	105,2	102,6	99,8	96,7	89,3	78,8				
8	110,4	107,2	103,8	101,6	100,1	97,7	90,9	78,3				
9	110,8	107,1	102,9	100,9	100,3	98,3	91,7	77,9				

	Puissances acoustiques globales de la V117 3,45MW– mât de 80 m <u>Mode 0 – Lw en dB</u>												
Vs (m/s)	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz					
3	99,9	97,9	94,4	90,9	89,4	84,6	79,2	67,5					
4	103,9	102	98,5	95	93,4	88,7	83,2	71,5					
5	108,9	106,9	103,4	100	98,3	93,6	88,1	76,3					
6	113	110,9	107,5	104,1	102,4	97,7	92,1	80,1					
7	115	113	109,5	106,1	104,5	99,8	94,2	82,2					
8	115,3	113,1	109,8	106,3	104,6	99,9	94,3	82					
9	115,6	113,1	109,8	106,3	104,7	99,8	94,1	81,4					

	Puissances acoustiques globales de la V90 2MW– mât de 80 m <u>Mode 0 – Lw en dB</u>											
Vs (m/s)	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz				
3	97	100,1	93	89,2	86,2	83,5	83	71,8				
4	101,8	101,6	95,6	92	89,4	86,8	86,5	76				
5	109,3	104,5	99,3	95,6	94,5	92	90,7	81,4				
6	113,5	106,2	101,4	97,6	97,2	94,9	93,2	84,3				
7	114,7	106,6	102,2	98,6	98,1	95,8	94,5	85,6				
8	114,8	106,9	102,3	98,7	98,2	95,9	94,5	85,6				
9	114,4	107,8	102,5	98,4	98,5	96,1	93,4	84,7				

	Puissances acoustiques globales de la E-82 2,3MW– mât de 99 m <u>Mode 0M I – Lw en dB</u>												
Vs (m/s)	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz					
3	/	/	/	1	1	/	/	/					
4	/	/	/	1	1	/	/	/					
5	106,2	103,4	97,7	95,2	92,2	85,7	73,3	69,6					
6	110,6	107,8	102,1	99,6	96,6	90,1	77,7	74					
7	112,6	109,8	104,1	101,6	98,6	92,1	79,7	76					
8	113	110,2	104,5	102	99	92,5	80,1	76,4					
9	113	110,2	104,5	102	99	92,5	80,1	76,4					

	Puissances acoustiques globales de la SWT 130 4,3MW- mât de 115 m <u>Mode 1 - Lw en dB</u>												
Vs (m/s)	63 Hz	125 Hz	250 Hz	500 Hz	1000 Hz	2000 Hz	4000 Hz	8000 Hz					
3	97,9	96,1	91,3	88,4	87,7	87,5	84,1	73,3					
4	102,4	100,6	95,8	92,9	92,2	92	88,6	77,8					
5	107,5	105,7	100,9	98	97,3	97,1	93,7	82,9					
6	110,9	109,1	104,3	101,4	100,7	100,5	97,1	86,3					
7	111,3	109,5	104,7	101,8	101,1	100,9	97,5	86,7					
8	111,3	109,5	104,7	101,8	101,1	100,9	97,5	86,7					
9	111,3	109,5	104,7	101,8	101,1	100,9	97,5	86,7					

 JLBi Conseils – n°2217-3A – février 2020
 Page 39 sur 107
 JLBi Conseils – n°2217-3A – février 2020

Position des éoliennes prises en considération :

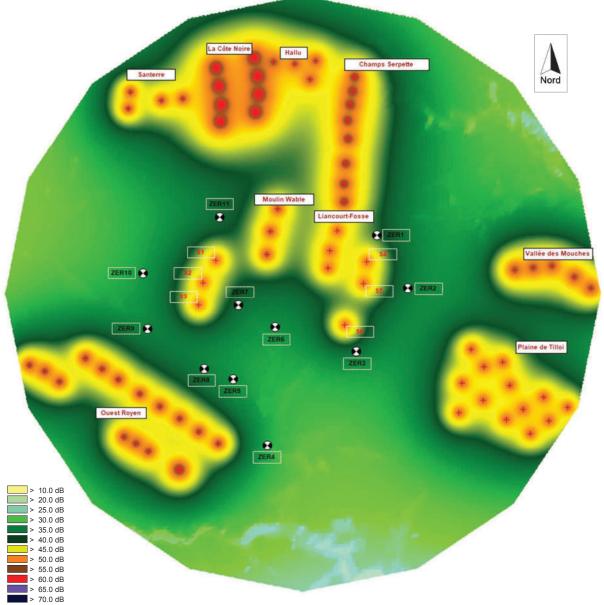
Lambert 93											
Parc / Eolienne		X	Υ								
	E1	683041	6960978								
	E2	682772	6960512								
0	E3	682683	6960042								
Sucrerie	E4	686192	6960949								
	E5	686124	6960499								
	E6	685728	6959622								
	E1	684100	6961100								
Moulin Wable	E2	684176	6961579								
	E3	684327	6962048								
	E1	685427	6961169								
Liancourt Fosse	E2	685386	6960819								
	E3	685579	6961601								
	E1	681433	6958176								
	E2	681864	6957904								
	E3	680966	6958464								
	E4	682266	6957646								
	E5	680622	6958683								
	E6	680303	6958901								
	E7	682651	6957401								
Ouest Royen	E8	683074	6957130								
Odest Noyen	E9	681111	6957268								
	E10	681363	6957122								
	E11	681642	6956948								
	E12	679764	6958430								
	E13	681967	6956752								
	E14	682260	6956581								
	E15	679452	6958623								
	E16	679137	6958756								
	E1	683129	6963875								
	E2	683863	6964071								
	E3	683148	6964226								
Côte Noire	E4	683927	6964443								
Cole None	E5	683095	6964615								
	E6	683908	6964822								
	E7	683042	6964996								
	E8	683832	6965208								

(suite:

	Lambei	rt 93	
Parc / Eolienne		X	Υ
	E1	685587	6962122
	E2	685654	6962563
	E3	685736	6963043
Oh O	E4	685870	6963579
Champ Serpette	E5	685872	6964011
	E6	685928	6964419
	E7	685984	6964795
	E8	686043	6965136
	E1	689274	6960780
	E2	689662	6960825
La Vallée des Mouches	E3	690055	6960864
	E4	690520	6960631
	E5	690866	6960395
	E1	682348	6964357
	E2	681899	6964317
Santerre	E3	681206	6964147
	E4	681251	6964495
	E1	685002	6964755
	E2	684244	6965119
Hallu	E3	685121	6965144
	E4	684687	6965084
	E1	688371	6959112
	E2	688116	6957786
	E3	688633	6958748
	E4	688616	6958048
	E5	689177	6958363
	E6	689100	6957646
Plaine de Tilloi	E7	689452	6957858
	E8	689132	6957021
	E9	689879	6958114
	E10	689601	6957353
	E11	689991	6957623
	E12	690382	6957900
	E13	688177	6958404

 JLBi Conseils – n°2217-3A – février 2020
 Page 41 sur 107
 JLBi Conseils – n°2217-3A – février 2020

Intégration des parcs voisins dans les niveaux de bruit


Les parcs et projets éoliens de Liancourt-Fosse et de Moulin Wable étant développés par ENERTRAG, leur contribution sonore seront ajoutées à la contribution du projet de Sucrerie.

Les parcs et projets éoliens de Ouest Royen, Champ Serpette, Santerre, La Côte noire, Hallu, Vallée des Mouches et Plaine de Tilloi n'étant pas développés par ENERTRAG, leurs contributions sonores seront ajoutées aux niveaux de bruit résiduel.

Pour les parcs éoliens voisins, aucun plan de gestion acoustique (PGA) n'a été considéré, les contributions des turbines ont été évaluées en mode normal (Full Power) en périodes diurne et nocturne sans serration (sauf pour le parc de Champ Serpette qui en est équipé).

Les simulations sont réalisées selon la norme ISO 9613-2.

JLBi Conseils – n°2217-3A – février 2020 Page 43 sur 107

7.2 Niveaux de bruit résiduel incluant les parcs et projets voisins

Les tableaux suivants présentent les niveaux de bruit résiduel retenus incluant les contributions sonores des parcs et projets éoliens voisins de Ouest Royen, Champ Serpette, Santerre, La Côte Noire, Hallu, La Vallée des Mouches et Plaine de Tilloi.

- R0 = Résiduel mesuré in situ ;
- R1 = R0 ⊕ Contribution sonore parcs voisins

① : somme logarithmique

Tous les niveaux sonores sont exprimés en dB(A). Les niveaux de bruit R0 et R1 sont arrondis à 0,5 dB(A) près.

Période diurne :

				Période diu	ırne : Nivea	ux en dB(A	.)	
Situation	Effets cumulés			Vitesse du	vent en m/s	s à h = 10 m	1	
		3 m/s	4 m/s	5 m/s	6 m/s	7 m/s	8 m/s	9 m/s
ZER 1	R0	42,5	43,0	44,5	45,0	46,0	47,5	50,5
Liancourt-	Bruit particulier	23,2	26,2	30,5	34,7	36,4	36,5	36,5
fosse	R1	42,6	43,1	44,7	45,4	46,5	47,8	50,7
	R0	42,0	42,5	42,5	43,0	43,5	45,5	49,5
ZER 2 Crémery	Bruit particulier	23,2	24,5	27,3	31,2	32,7	32,9	33,0
	R1	42,1	42,6	42,6	43,3	43,8	45,7	49,6
ZER 3	R0	51,5	52,0	52,0	52,5	54,5	55,5	57,5
Gruny	Bruit particulier	22,1	23,3	25,7	29,4	31,0	31,2	31,2
(Ouest)	R1	51,5	52,0	52,0	52,5	54,5	55,5	57,5
ZER 4	R0	49,0	49,0	49,5	49,5	50,5	52,0	54,5
	Bruit particulier	24,4	26,7	30,1	32,7	33,5	33,5	33,5
Roye	R1	49,0	49,0	49,5	49,6	50,6	52,1	54,5
ZER 5	R0	42,0	43,5	46,0	47,0	52,5	55,0	58,0
Goyencourt	Bruit particulier	24,8	27,2	30,7	33,4	34,2	34,2	34,2
(Est)	R1	42,1	43,6	46,1	47,2	52,6	55,0	58,0
ZER 6	R0	45,0	47,0	50,0	52,0	55,5	58,5	60,5
Fresnoy-Les-	Bruit particulier	20,5	22,8	26,4	29,6	30,8	31,0	31,0
Roye (Sud/Est)	R1	45,0	47,0	50,0	52,0	55,5	58,5	60,5
ZER 7	R0	40,0	42,0	44,0	45,0	47,0	49,5	53,0
Fresnoy-Les- Roye	Bruit particulier	20,6	23,1	26,8	30,0	31,2	31,4	31,4
(Nord/Ouest)	R1	40,0	42,1	44,1	45,1	47,1	49,6	53,0
ZER 8	R0	41,0	41,0	41,5	42,0	43,0	44,0	47,0
Goyencourt	Bruit particulier	26,1	28,6	32,1	34,7	35,6	35,5	35,5
(Ouest)	R1	41,1	41,2	42,0	42,7	43,7	44,6	47,3
	R0	39,0	39,0	39,5	39,5	40,0	41,0	42,0
ZER 9	Bruit particulier	25,7	28,2	31,8	34,4	35,2	35,2	35,1
Damery	R1	39,2	39,3	40,2	40,7	41,2	42,0	42,8

JLBi Conseils – n°2217-3A – février 2020 Page 44 sur 107

Situation		Période diurne : Niveaux en dB(A) Vitesse du vent en m/s à h = 10 m								
	Effets cumulés	3 m/s	4 m/s	5 m/s	6 m/s	7 m/s	8 m/s	9 m/s		
ZER 10	R0	39,5	40,0	42,5	43,5	43,5	43,5	45,0		
Parvillers-Le-	Bruit particulier	21,0	23,6	27,5	30,5	31,6	31,6	31,6		
Quesnoy	R1	39,6	40,1	42,6	43,7	43,8	43,8	45,2		
	R0	37,5	38,0	38,5	41,0	46,0	47,5	49,5		
ZER 11 La Chavatte	Bruit particulier	21,1	24,4	28,7	32,5	33,8	34,3	34,4		
La Oriavatte	R1	37,6	38,2	38,9	41,6	46,3	47,7	49,6		

Période nocturne :

			P	ériode noct	turne : Nive	aux en dB(A)	
Situation	Effets cumulés			Vitesse du	vent en m/s	s à h = 10 m	า	
		3 m/s	4 m/s	5 m/s	6 m/s	7 m/s	8 m/s	9 m/s
ZER 1	R0	33,5	35,0	35,0	36,0	40,5	42,0	43,0
Liancourt-	Bruit particulier	23,2	26,2	30,5	34,7	36,4	36,5	36,5
fosse	R1	33,9	35,5	36,3	38,4	41,9	43,1	43,9
	R0	35,0	37,0	37,0	40,0	43,0	45,0	46,5
ZER 2 Crémery	Bruit particulier	23,2	24,5	27,3	31,2	32,7	32,9	33,0
Cremery	R1	35,3	37,2	37,4	40,5	43,4	45,3	46,7
ZER 3	R0	40,0	40,0	40,5	42,0	45,5	46,0	46,5
Gruny	Bruit particulier	22,1	23,3	25,7	29,4	31,0	31,2	31,2
(Ouest)	R1	40,1	40,1	40,6	42,2	45,7	46,1	46,6
	R0	42,5	43,0	43,0	44,5	47,5	47,5	48,5
ZER 4	Bruit particulier	24,4	26,7	30,1	32,7	33,5	33,5	33,5
Roye	R1	42,6	43,1	43,2	44,8	47,7	47,7	48,6
ZER 5 Goyencourt (Est)	R0	40,0	40,5	42,0	47,0	51,5	54,0	55,0
	Bruit particulier	24,8	27,2	30,7	33,4	34,2	34,2	34,2
	R1	40,1	40,7	42,3	47,2	51,6	54,0	55,0
7ED 6	R0	40,0	43,5	45,5	50,5	54,5	56,0	57,0
	Bruit particulier	20,5	22,8	26,4	29,6	30,8	31,0	31,0
ZER 6 Fresnoy-Les- Roye (Sud/Est)	R1	40,0	43,5	45,6	50,5	54,5	56,0	57,0
ZER 7	R0	35,0	36,0	38,0	43,0	46,5	49,5	50,5
Fresnoy-Les- Rove	Bruit particulier	20,6	23,1	26,8	30,0	31,2	31,4	31,4
(Nord/Ouest)	R1	35,2	36,2	38,3	43,2	46,6	49,6	50,6
ZER 8	R0	34,0	35,0	35,0	35,5	39,0	39,5	40,5
Goyencourt	Bruit particulier	26,1	28,6	32,1	34,7	35,6	35,5	35,5
(Ouest)	R1	34,7	35,9	36,8	38,1	40,6	41,0	41,7
	R0	32,5	32,5	33,5	34,0	37,0	37,0	38,0
ZER 9	Bruit particulier	25,7	28,2	31,8	34,4	35,2	35,2	35,1
Damery	R1	33,3	33,9	35,7	37,2	39,2	39,2	39,8
ZER 10	R0	27,0	29,5	31,0	34,0	35,5	39,0	40,0
	Bruit particulier	21,0	23,6	27,5	30,5	31,6	31,6	31,6
Parvillers-Le- Quesnoy	R1	28,0	30,5	32,6	35,6	37,0	39,7	40,6
	R0	33,0	33,5	35,0	39,5	44,5	46,5	47,5
ZER 11	Bruit particulier	21,1	24,4	28,7	32,5	33,8	34,3	34,4
La Chavatte	R1	33,3	34,0	35,9	40.3	44,9	46,8	47,7

Niveaux de bruit résiduel R1 retenus :

Pour rappel,

R1 = R0 \oplus Contributions sonores parcs Ouest Royen, Champ Serpette, Santerre, La Côte Noire, Hallu, La Vallée des Mouches et Plaine de Tilloi; avec R0 niveau de bruit résiduel initial.

⊕ : somme logarithmique

	Période diurne		Indicate	ur de nivea	u de bruit ré	ésiduel – R1	en dB(A)		
	Periode diurne	Vitesse du vent - Vs en m/s à h = 10m							
ZER	Situation	3 m/s	4 m/s	5 m/s	6 m/s	7 m/s	8 m/s	9 m/s	
1	Liancourt-fosse	42,6	43,1	44,7	45,4	46,5	47,8	50,7	
2	Crémery	42,1	42,6	42,6	43,3	43,8	45,7	49,6	
3	Gruny (Ouest)	51,5	52,0	52,0	52,5	54,5	55,5	57,5	
4	Roye	49,0	49,0	49,5	49,6	50,6	52,1	54,5	
5	Goyencourt (Est)	42,1	43,6	46,1	47,2	52,6	55,0	58,0	
6	Fresnoy-Les-Roye (Sud/Est)	45,0	47,0	50,0	52,0	55,5	58,5	60,5	
7	Fresnoy-Les-Roye (Nord/Ouest)	40,0	42,1	44,1	45,1	47,1	49,6	53,0	
8	Goyencourt (Ouest)	41,1	41,2	42,0	42,7	43,7	44,6	47,3	
9	Damery	39,2	39,3	40,2	40,7	41,2	42,0	42,8	
10	Parvillers-Le-Quesnoy	39,6	40,1	42,6	43,7	43,8	43,8	45,2	
11	La Chavatte	37,6	38,2	38,9	41,6	46,3	47,7	49,6	

	Période nocturne		Indicate	ur de nivea	u de bruit ré	siduel – R1	en dB(A)		
	Periode nocturne	Vitesse du vent - Vs en m/s à h = 10m							
ZER	Situation	3 m/s	4 m/s	5 m/s	6 m/s	7 m/s	8 m/s	9 m/s	
1	Liancourt-fosse	33,9	35,5	36,3	38,4	41,9	43,1	43,9	
2	Crémery	35,3	37,2	37,4	40,5	43,4	45,3	46,7	
3	Gruny (Ouest)	40,1	40,1	40,6	42,2	45,7	46,1	46,6	
4	Roye	42,6	43,1	43,2	44,8	47,7	47,7	48,6	
5	Goyencourt (Est)	40,1	40,7	42,3	47,2	51,6	54,0	55,0	
6	Fresnoy-Les-Roye (Sud/Est)	40,0	43,5	45,6	50,5	54,5	56,0	57,0	
7	Fresnoy-Les-Roye (Nord/Ouest)	35,2	36,2	38,3	43,2	46,6	49,6	50,6	
8	Goyencourt (Ouest)	34,7	35,9	36,8	38,1	40,6	41,0	41,7	
9	Damery	33,3	33,9	35,7	37,2	39,2	39,2	39,8	
10	Parvillers-Le-Quesnoy	28,0	30,5	32,6	35,6	37,0	39,7	40,6	
11	La Chavatte	33,3	34,0	35,9	40,3	44,9	46,8	47,7	

7.3 Emergences prévisionnelles des parcs éoliens exploités par ENERTRAG

Les tableaux suivants présentent les émergences sonores calculées en considérant les parcs de Sucrerie, Liancourt-Fosse et Moulin Wable.

Les contributions sonores des parcs voisins sont intégrées aux niveaux de bruit résiduel R1

Les résultats des émergences prévisionnelles en considérants la totalité des parcs en fonction sont présentés dans les tableaux suivants.

Période diurne :

				Période diu	rne : Nivea	ux en dB(A))	
Situation	Tous les parcs en			Vitesse du	vent en m/s	s à h = 10 m		
	fonctionnement	3 m/s	4 m/s	5 m/s	6 m/s	7 m/s	8 m/s	9 m/s
	Bruit résiduel R1	42,6	43,1	44,7	45,4	46,5	47,8	50,7
ZER 1 Liancourt-	Bruit particulier	30,1	31,5	35,4	38,3	38,8	39,0	39,0
fosse	Bruit ambiant	42,8	43,4	45,2	46,2	47,1	48,4	51,0
	Emergence	0,0	0,5	0,5	1,0	0,5	0,5	0,5
	Bruit résiduel R1	42,1	42,6	42,6	43,3	43,8	45,7	49,6
ZER 2	Bruit particulier	24,9	27,2	31,8	34,8	35,2	35,3	35,3
Crémery	Bruit ambiant	42,1	42,7	43,0	43,9	44,4	46,1	49,8
	Emergence	0,0	0,0	0,5	0,5	0,5	0,5	0,0
	Bruit résiduel R1	51,5	52,0	52,0	52,5	54,5	55,5	57,5
ZER 3 Gruny	Bruit particulier	25,3	28,3	33,3	36,5	36,8	36,8	36,8
(Ouest)	Bruit ambiant	51,5	52,0	52,1	52,6	54,6	55,6	57,5
(Emergence	0,0	0,0	0,0	0,0	0,0	0,0	0,0
	Bruit résiduel R1	49,0	49,0	49,5	49,6	50,6	52,1	54,5
ZER 4	Bruit particulier	14,5	16,6	20,9	23,7	24,2	24,3	24,4
Roye	Bruit ambiant	49,0	49,0	49,6	49,6	50,6	52,1	54,5
	Emergence	0,0	0,0	0,0	0,0	0,0	0,0	0,0
	Bruit résiduel R1	42,1	43,6	46,1	47,2	52,6	55,0	58,0
ZER 5 Goyencourt	Bruit particulier	18,5	21,2	25,9	28,9	29,2	29,4	29,4
(Est)	Bruit ambiant	42,1	43,6	46,2	47,2	52,6	55,0	58,0
,	Emergence	0,0	0,0	0,0	0,0	0,0	0,0	0,0
	Bruit résiduel R1	45,0	47,0	50,0	52,0	55,5	58,5	60,5
ZER 6	Bruit particulier	23,7	25,9	30,3	33,1	33,7	33,9	33,8
Fresnoy-Les- Roye (Sud/Est)	Bruit ambiant	45,0	47,0	50,1	52,1	55,5	58,5	60,5
	Emergence	0,0	0,0	0,0	0,0	0,0	0,0	0,0
ZER 7	Bruit résiduel R1	40,0	42,1	44,1	45,1	47,1	49,6	53,0
ZER / Fresnoy-Les-	Bruit particulier	25,6	29,0	34,0	37,1	37,5	37,6	37,5
Roye (Nord/Ouest)	Bruit ambiant	40,2	42,3	44,5	45,8	47,6	49,8	53,1
(Noru/Ouest)	Emergence	0,0	0,0	0,5	0,5	0,5	0,5	0,0

JLBi Conseils – n°2217-3A – février 2020 Page 47 sur 107 JLBi Conseils – n°2217-3A – février 2020

				Période diu	rne : Nivea	ux en dB(A))		
Situation	Tous les parcs en	Vitesse du vent en m/s à h = 10 m							
Citation	fonctionnement	3 m/s	4 m/s	5 m/s	6 m/s	7 m/s	8 m/s	9 m/s	
	Bruit résiduel R1	41,1	41,2	42,0	42,7	43,7	44,6	47,3	
ZER 8	Bruit particulier	19,1	22,1	27,1	30,2	30,5	30,6	30,6	
Goyencourt (Ouest)	Bruit ambiant	41,2	41,3	42,1	43,0	43,9	44,7	47,4	
(Emergence	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
	Bruit résiduel R1	39,2	39,3	40,2	40,7	41,2	42,0	42,8	
ZER 9	Bruit particulier	19,5	22,8	28,0	31,2	31,5	31,5	31,5	
Damery	Bruit ambiant	39,2	39,4	40,4	41,1	41,7	42,4	43,1	
	Emergence	0,0	0,0	0,5	0,5	0,5	0,5	0,5	
	Bruit résiduel R1	39,6	40,1	42,6	43,7	43,8	43,8	45,2	
ZER 10 Parvillers-Le-	Bruit particulier	20,2	23,6	28,8	32,0	32,3	32,3	32,3	
Quesnoy	Bruit ambiant	39,6	40,2	42,8	44,0	44,1	44,1	45,4	
	Emergence	0,0	0,0	0,0	0,5	0,5	0,5	0,0	
	Bruit résiduel	37,6	38,2	38,9	41,6	46,3	47,7	49,6	
ZER 11	Bruit particulier	24,3	27,9	32,7	35,6	36,2	36,4	36,4	
La Chavatte	Bruit ambiant	37,8	38,6	39,9	42,6	46,7	48,0	49,8	
	Emergence	0,0	0,5	1,0	1,0	0,5	0,5	0,0	

Période Nocturne :

			Р	ériode noct	urne : Nive	aux en dB(A	A)		
Situation	Tous les parcs en	Vitesse du vent en m/s à h = 10 m							
	fonctionnement	3 m/s	4 m/s	5 m/s	6 m/s	7 m/s	8 m/s	9 m/s	
	Bruit résiduel R1	33,9	35,5	36,3	38,4	41,9	43,1	43,9	
ZER 1 Liancourt-	Bruit particulier	30,1	31,5	35,4	38,3	38,8	39,0	39,0	
fosse	Bruit ambiant	35,4	37,0	38,9	41,4	43,6	44,5	45,1	
	Emergence	1,5	1,5	2,5	3,0	1,5	1,5	1,0	
	Bruit résiduel R1	35,3	37,2	37,4	40,5	43,4	45,3	46,7	
ZER 2	Bruit particulier	24,9	27,2	31,8	34,8	35,2	35,3	35,3	
Crémery	Bruit ambiant	35,7	37,6	38,5	41,6	44,0	45,7	47,0	
	Emergence	0,5	0,5	1,0	1,0	0,5	0,5	0,5	
	Bruit résiduel R1	40,1	40,1	40,6	42,2	45,7	46,1	46,6	
ZER 3	Bruit particulier	25,3	28,3	33,3	36,5	36,8	36,8	36,8	
Gruny (Ouest)	Bruit ambiant	40,2	40,4	41,4	43,3	46,2	46,6	47,1	
(====,	Emergence	0,0	0,5	0,5	1,0	0,5	0,5	0,5	
	Bruit résiduel R1	42,6	43,1	43,2	44,8	47,7	47,7	48,6	
ZER 4	Bruit particulier	14,5	16,6	20,9	23,7	24,2	24,3	24,4	
Roye	Bruit ambiant	42,6	43,1	43,2	44,8	47,7	47,7	48,7	
	Emergence	0,0	0,0	0,0	0,0	0,0	0,0	0,0	

Page 48 sur 107

			F	Période noc	turne : Nive	eaux en dB((A)		
Situation	Tous les parcs en	Vitesse du vent en m/s à h = 10 m							
	fonctionnement	3 m/s	4 m/s	5 m/s	6 m/s	7 m/s	8 m/s	9 m/s	
	Bruit résiduel R1	40,1	40,7	42,3	47,2	51,6	54,0	55,0	
ZER 5	Bruit particulier	18,5	21,2	25,9	28,9	29,2	29,4	29,4	
Goyencourt (Est)	Bruit ambiant	40,2	40,7	42,4	47,2	51,6	54,1	55,0	
()	Emergence	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
	Bruit résiduel R1	40,0	43,5	45,6	50,5	54,5	56,0	57,0	
ZER 6	Bruit particulier	23,7	25,9	30,3	33,1	33,7	33,9	33,8	
Fresnoy-Les- Roye (Sud/Est)	Bruit ambiant	40,1	43,6	45,7	50,6	54,6	56,0	57,0	
, , ,	Emergence	0,0	0,0	0,0	0,0	0,0	0,0	0,0	
7ED 7	Bruit résiduel R1	35,2	36,2	38,3	43,2	46,6	49,6	50,6	
ZER 7 Fresnoy-Les-	Bruit particulier	25,6	29,0	34,0	37,1	37,5	37,6	37,5	
Roye	Bruit ambiant	35,6	37,0	39,7	44,2	47,1	49,8	50,8	
(Nord/Ouest)	Emergence	0,5	1,0	1,5	1,0	0,5	0,5	0,0	
	Bruit résiduel R1	34,7	35,9	36,8	38,1	40,6	41,0	41,7	
ZER 8	Bruit particulier	19,1	22,1	27,1	30,2	30,5	30,6	30,6	
Goyencourt (Ouest)	Bruit ambiant	34,8	36,1	37,2	38,8	41,0	41,3	42,0	
(0000)	Emergence	(*)	0,0	0,5	0,5	0,5	0,5	0,5	
	Bruit résiduel R1	33,3	33,9	35,7	37,2	39,2	39,2	39,8	
ZER 9	Bruit particulier	19,5	22,8	28,0	31,2	31,5	31,5	31,5	
Damery	Bruit ambiant	33,5	34,2	36,4	38,2	39,9	39,9	40,4	
	Emergence	(*)	(*)	0,5	1,0	0,5	0,5	0,5	
	Bruit résiduel R1	28,0	30,5	32,6	35,6	37,0	39,7	40,6	
ZER 10	Bruit particulier	20,2	23,6	28,8	32,0	32,3	32,3	32,3	
Parvillers-Le- Quesnoy	Bruit ambiant	28,6	31,3	34,1	37,2	38,3	40,4	41,2	
	Emergence	(*)	(*)	(*)	1,5	1,5	0,5	0,5	
	Bruit résiduel R1	33,3	34,0	35,9	40,3	44,9	46,8	47,7	
ZER 11	Bruit particulier	24,3	27,9	32,7	35,6	36,2	36,4	36,4	
La Chavatte	Bruit ambiant	33,8	35,0	37,6	41,6	45,4	47,1	48,0	
	Emergence	(*)	(*)	1,5	1,5	0,5	0,5	0,5	

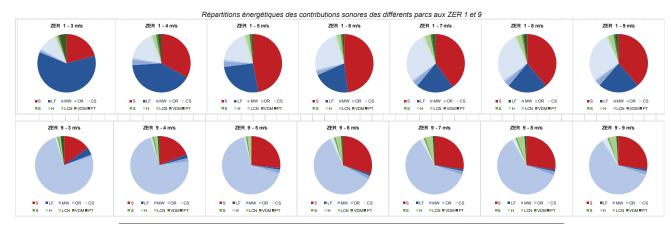
(*): $Amb \leq 35dB(A)$

Conformément à l'arrêté du 26 août 2011, l'émergence n'est recherchée que si le niveau de bruit ambiant est supérieur à 35 dB(A).

Analyse :

En considérant les différents parcs éoliens dans la zone d'étude, il est constaté :

- Période diurne : conformité pour les classes de vitesses de vent standardisées à 10 mètres de hauteur de 3 à 9m/s.
- Période nocturne : : conformité pour les classes de vitesses de vent standardisées à 10 mètres de hauteur de 3 à 9m/s.


JLBi Conseils – n°2217-3A – février 2020 Page 49 sur 107

ENERTRAG – Projet éolien Sucrerie (80) – Etude d'impact acoustique

7.4 Contribution des différents parcs et projets

Les tableaux suivants présentent les contributions sonores **sous forme de pourcentages** des différents projets considérés. Les valeurs en gras indiquent les parcs les plus contributifs en fonction des ZER et des vitesses de vent.

JLBi Conseils – n°2217-3A – février 2020 Page 50 sur

8 Conclusion

La présente étude d'impact acoustique relative au projet de parc éolien de Sucrerie (80), réalisée par **JLBi Conseils** à l'initiative de la société **ENERTRAG**, conduit à la conclusion suivante :

Dans les conditions où nous avons opéré,

De nos mesurages sur le site du projet de parc éolien de Sucrerie (80) envisagé par la société ENERTRAG réalisés du 20 février au 03 mars 2017, suivant les normes NFS 31-010 et NFS 31-114, et réajustés aux conditions de vent "normalisées" au fonctionnement des machines (soit de 3 à 9 m/s pour une hauteur de 10 m),

De nos modélisations et calculs sous CadnaA (01dB Metravib - DataKustiK), réalisés suivant la norme ISO-9613

et,

en regard de l'Arrêté du 26 août 2011 relatif aux installations de production d'électricité utilisant l'énergie mécanique du vent au sein d'une installation soumise à autorisation au titre de la rubrique 2980 de la législation des ICPE.

Il apparaît:

En considérant l'implantation de 6 éoliennes **VESTAS** de type **V150 avec serrations (STE)** sur mât de **125** mètres de hauteur pour le projet de Sucrerie, il apparait

En considérant le parc seul :

Emergences globales en ZER

- En période diurne : conformité en tous les points de mesures en considérant les éoliennes fonctionnant en mode nominal (Mode 0) ;
- En périodes nocturne : conformité en tous les points de mesures en considérant les éoliennes fonctionnant suivant un plan de fonctionnement adapté (voir chapitre 6.3).

Niveaux sonores en périmètre ICPE

Les niveaux sonores calculés au périmètre de l'installation sont conformes en périodes diurne et nocturne.

Tonalités marquées en ZER

Les profils spectraux des puissances acoustiques de l'éolienne ne contenant pas de tonalités marquées, aucune tonalité marquée ne devrait être observée au niveau des habitations.

JLBi Conseils – n°2217-3A – février 2020 Page 51 sur 107

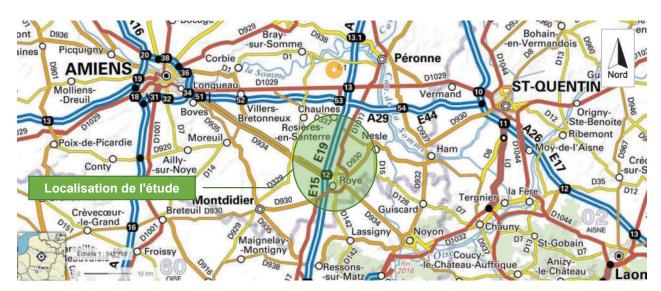
ENERTRAG - Projet éolien Sucrerie (80) - Etude d'impact acoustique

En considérant les différents parcs et projets impactant la zone d'implantation de Sucrerie, dans un rayon de 6km ((Liancourt-Fosse, Moulin Wable, Ouest Royen, Champ Serpette, Santerre, La Côte Noire, Hallu, La Vallée des Mouches et Plaine de Tilloi):

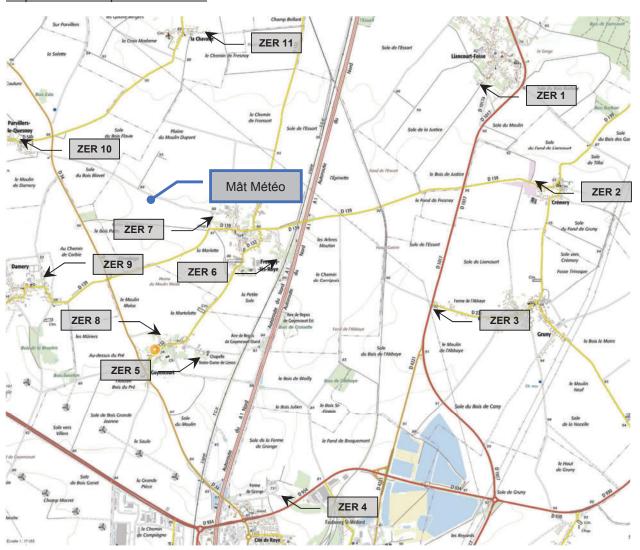
Emergences globales en ZER

- En période diurne : conformité à tous les points de mesures en considérant les éoliennes fonctionnant en mode nominal (Mode 0) ;
- En période nocturne : conformité à tous les points de mesures en considérant les éoliennes fonctionnant en mode nominal (Mode 0) ;

Une étude sera réalisée dans une période d'un an suivant la mise en service du parc éolien afin d'avaliser cette étude prévisionnelle et, le cas échéant, de procéder à toute modification de fonctionnement des éoliennes permettant d'assurer le respect de la réglementation en vigueur et de prendre en compte toute avancée technologique du constructeur.


Les conclusions concernant les projets encore en instruction à ce jour n'étant pas connues, ce contrôle sera réalisé en appliquant le plan de gestion acoustique suivant en période nocturne :

	Plan de Fonctionnement nocturne						
	3 m/s	4 m/s	5 m/s	6 m/s	7 m/s	8 m/s	9 m/s
S1	Mode 0	Mode 0	Mode 0	Mode 0	Mode 0	Mode 0	Mode 0
S2	Mode 0	Mode 0	Mode 0	Mode 0	Mode 0	Mode 0	Mode 0
S3	Mode 0	Mode 0	Mode 0	Mode 0	Mode 0	Mode 0	Mode 0
S4	Mode 0	Mode 0	Mode 0	Mode S01	Mode 0	Mode 0	Mode 0
S5	Mode 0	Mode 0	Mode 0	Mode 0	Mode 0	Mode 0	Mode 0
S6	Mode 0	Mode 0	Mode 0	Mode 0	Mode 0	Mode 0	Mode 0


JLBi Conseils – n°2217-3A – février 2020 Page 52 sur 107

A. Localisation de l'étude

Localisation de l'étude

Emplacement des points de mesure

B. Photographies

ZER 1 - Liancourt-Fosse

ZER 2 – Crémery

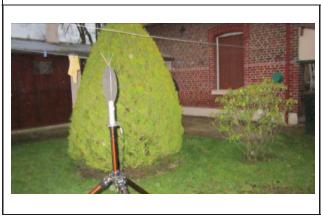
ZER 3 – Gruny (Ouest)

ZER 5 – Goyencourt (Est)

ZER 6 – Fresnoy-Les-Roye (Nord-Ouest)

ZER 7 – Fresnoy-Les-Roye (Nord-Ouest)

ZER 8 – Goyencourt (Ouest)



ZER 9 – Damery

ZER 10 - Parvillers-Le-Quesnoy

ZER 11 – La Chavatte

 JLBi Conseils – n°2217-3A – février 2020
 Page 57 sur 107
 JLBi Conseils – n°2217-3A – février 2020

C. Mesures acoustiques

Conditions météorologiques rencontrées

Du 20 février au 03 mars 2017

			Conditions météorologiques	
Date	es	Température °C	Pression atmosphérique hPa	Humidité relative %
Jour		8-10°C	1020-1021 hPa	98%
20/02/2017	Nuit	8-9°C	1019 hPa	98%
21/02/2017	Jour	8-10°C	1018-1020 hPa	95-98%
21/02/2017	Nuit	9-10°C	1013-1015 hPa	79-94%
00/00/0047	Jour	10-11°C	1012-1014 hPa	84-92%
22/02/2017	Nuit	8-10°C	1002-1007 hPa	80-89%
23/02/2017	Jour	7-10°C	999-1002 hPa	67-89%
23/02/2017	Nuit	5-8°C	1007-1014 hPa	72-77%
24/02/2017	Jour	4-7°C	1016-1020 hPa	66-77%
24/02/2017	Nuit	2-5°C	1020-1021 hPa	81-86%
05/00/0047	Jour	3-11°C	1016-1020 hPa	58-83%
25/02/2017	Nuit	7-8°C	1013-1014 hPa	67-79%
26/02/2017	Jour	7-12°C	1009-1013 hPa	77-91%
20/02/2017	Nuit	8-10°C	1000-1007 hPa	68-80%
27/02/2017	Jour	5-10°C	980-1000 hPa	71-93%
21/02/2017	Nuit	3-5°C	990 hPa	73-84%
28/02/2017	Jour	4-8°C	990-996 hPa	66-82%
28/02/2017	Nuit	6-8°C	997-1002 hPa	78-84%
01/03/2017	Jour	6-11°C	998-1002 hPa	80-95%
01/03/2017	Nuit	7-9°C	1005-1009 hPa	68-77%
02/02/2017	Jour	7-10°C	1012-1016 hPa	55-70%
02/03/2017	Nuit	4-6°C	1005-1014 hPa	75-83%
03/03/2017	Jour	5-12°C	995-1005 hPa	67-88%

JLBi Conseils – n°2217-3A – février 2020 Page 59 sur 107

ENERTRAG - Projet éolien Sucrerie (80) - Etude d'impact acoustique

Analyse qualitative des facteurs climatiques

La campagne de mesurage acoustique a été menée avec le flux dominant du site en hiver (peu ou pas de feuillage dans la végétation).

Rappel des critères qualitatifs des effets météo sur la propagation du son dans le cadre d'un couple source-récepteur (dans le cas présent, les sources sonores que sont les éoliennes ne sont pas encore implantées, donc ces effets ne peuvent pas être appréhendés) :

- U1 Vent fort (3 à 5 m/s) contraire au sens de la source-récepteur
- U2 Vent moyen contraire ou vent fort, peu contraire ou vent moyen peu contraire
- Vent faible ou vent quelconque soufflant de travers
- Vent moyen portant ou vent fort peu portant ou vent moyen peu portant
- Vent fort portant.
- T1 Jour ET rayonnement fort ET surface du sol sèche ET (vent moyen ou faible);
- Jour ET [rayonnement moyen à faible OU surface du sol humide OU vent fort] (Si toutes les conditions reliées par des OU sont remplies, on se retrouve dans T3);
- Période de lever du soleil OU période de coucher du soleil OU [jour et rayonnement moyen à faible ET surface du sol humide ET vent fort];
- Nuit ET (nuageux OU vent fort, moyen);
- T5 Nuit ET ciel dégagé ET vent faible.
- Conditions défavorables pour la propagation sonore Conditions défavorables pour la propagation sonore Conditions homogènes pour la propagation sonore

- Conditions favorables pour la propagation sonore Conditions favorables pour la propagation sonore

	U1	U2	U3	U4	U5
T1			-	-	
T2		1	-	Ζ	+
T3	-	-	Z	+	+
T4	-	Ζ	+	++	++
T5		+	+	++	

Tableau extrait de la norme NFS 31-010/A

JLBi Conseils – n°2217-3A – février 2020 Page 60 sur 107

ZER 1	Localisation Liancourt-Fosse
Date début	20/02/2017
Date Fin	03/03/2017
Opérateur	MAV
Durée d'intégration	1 seconde
Spectre	
n° sonomètre	Solo n°10667 (4)
Justification du choix de l'emplacement :	ZER située au Nord-Est du projet éolien
90 85 	23/02/17 25/02/17 27/02/17 01/03/17 03/03/17 Vitesse de vent sur le site SUCRERIE
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	### T
Observations :	Habitation située en limite Sud-Ouest du hameau. L'environnement sonore se caractérise par l'activité de la nature (oiseaux, vent dans les feuillages).

ZER 2	Localisation Crémery	
Date début	20/02/2017	
Date Fin	03/03/2017	111111111111111111111111111111111111111
Opérateur	MAV	
Durée d'intégration	1 seconde	
Spectre	1	
n° sonomètre	Duo n°10135 (17)	Edwin 9 1 666
Justification du choix de l'emplacement :	ZER située à l'Est du projet éc	olien
90 85	23/02/17 25/02	2/17 27/02/17 01/03/17 03/03/17
	Vitesse de v	vent sur le site SUCRERIE
20 18 16 14 12 10 8 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		######################################
Observations :	l'activité de la nature (oiseaux,	rd-Ouest du hameau. L'environnement sonore se caractérise par k, vent dans les feuillages) et dans une moindre mesure par le bruit lépartementale n°1017 située à environ 750m à l'Ouest.

JLBi Conseils – n°2217-3A – février 2020 Page 61 sur 107 JLBi Conseils – n°2217-3A – février 2020 Page 62 sur 107

ZER 3	Localisation Gruny (Ouest)
Date début	20/02/2017
Date Fin	03/03/2017
Opérateur	MAV
Durée d'intégration	1 seconde
Spectre	
n° sonomètre	Solo n°10668 (5)
Justification du choix de l'emplacement :	ZER située à l'Est du projet éolien
90 85	23/02/17 25/02/17 27/02/17 01/03/17 03/03/17
20	Vitesse de vent sur le site SUCRERIE
18 16 16 17 17 18 18 19 19 19 19 19 19 19 19 19 19 19 19 19	
Observations :	Habitation située en limite Ouest du hameau. L'environnement sonore se caractérise par l'activité de la nature (oiseaux, vent dans les feuillages) et par le bruit de la circulation sur la route départementale n°1017 qui longe l'habitation par l'Ouest.

ZER 4	Localisation Roye	
Date début Date Fin	20/02/2017 03/03/2017	
Opérateur	MAV	
Durée d'intégration	1 seconde	
Spectre	1	
n° sonomètre	Duo n°10538 (18)	Echale 1: 1 008
Justification du choix de l'emplacement :	ZER située au Sud du projet é	eolien
90 85	23/02/17 25/02	2/17 27/02/17 01/03/17 03/03/17
20	Vitesse de v	ent sur le site SUCRERIE
Milesse en mis à h = 10 m		8 3 8 8 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
		rd de la commune. L'anvironnement conore se caractérice par

Observations :

Habitation située en limite Nord de la commune. L'environnement sonore se caractérise par l'activité de la nature (oiseaux, vent dans les feuillages), par les bruits de la ferme à proximité et par le bruit de la circulation sur la route départementale n°934 qui longe l'habitation par le Sud et sur l'autoroute A1 située à environ 600m à l'Ouest.

ZER 5	Localisation Goyencourt ((Est)
Date début	20/02/2017	
Date Fin	03/03/2017	
Opérateur	MAV	
Durée d'intégration	1 seconde	
Spectre	1	
n° sonomètre	Duo n°10201 (15)	Echia 1-103
Justification du choix de l'emplacement :	ZER située au Sud du projet é	éolien
90 85	23/02/17 25/0	2/17 27/02/17 01/03/17 03/03/17
20	Vitesse de v	vent sur le site SUCRERIE
18 16 14 10 10 10 10 10 10 10 10 10 10 10 10 10		
Observations :	de la nature (oiseaux, vent da	t du hameau. L'environnement sonore se caractérise par l'activité ans les feuillages), par le bruit de la circulation sur l'autoroute A1 et par le bruit de la voie ferrée située à environ 400m à l'Est.

ZER 6	Localisation Fresnoy-Les-Roye (Sud-Est)
Date début	20/02/2017
Date Fin	03/03/2017
Opérateur	MAV
Durée d'intégration	1 seconde
Spectre	
n° sonomètre	Duo n°10944 (20)
Justification du choix de l'emplacement :	ZER située au centre du projet éolien
90 85	23/02/17 25/02/17 27/02/17 01/03/17 03/03/17 Vitesse de vent sur le site SUCRERIE
20 18 16	
Messee our 14	When we will have the second of the second o

Observations : Habitation située en limite Est du hameau. L'environnement sonore se caractérise par l'activité de la nature (oiseaux, vent dans les feuillages), par le bruit de la circulation sur l'autoroute A1 située à environ 175m à l'Est et par le bruit de la voie ferrée située à 60 mètres à l'Est.

ZER 7	Localisation Fresnoy-Les-Roye (Nord-Ouest)
Date début	20/02/2017
Date Fin	03/03/2017
Opérateur	MAV
Durée d'intégration	1 seconde
Spectre	
n° sonomètre	Duo n°10539 (19)
Justification du choix de l'emplacement :	ZER située au centre du projet éolien
90 85	23/02/17 25/02/17 27/02/17 01/03/17 03/03/17
20	Vitesse de vent sur le site SUCRERIE
18 16 16 12 12 10 18 8 6 4 10 10 10 10 10 10 10 10 10 10 10 10 10	
Observations :	Habitation située en limite Nord-Ouest du hameau. L'environnement sonore se caractérise par l'activité de la nature (oiseaux, vent dans les feuillages), par le bruit de la circulation sur l'autoroute A1 située à environ 1000m à l'Est et par le bruit de la voie ferrée située à 920 mètres à l'Est.

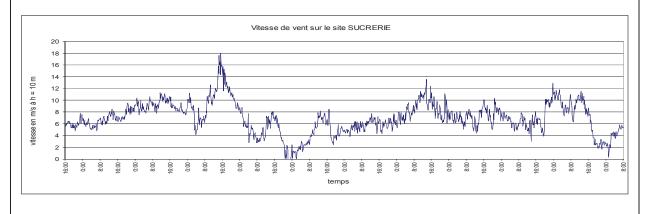
ZER 8	Localisation Goyencour	t (Ouest)	
Date début	20/02/2017		
Date Fin	03/03/2017		
Opérateur	MAV		
Durée d'intégration	1 seconde		
Spectre	/		
n° sonomètre	Solo n°10675 (3)	Echalte 1: 1065	
Justification du choix de l'emplacement :	ZER située au Sud du projet	éolien	
85	23/02/17 25/	02/17 27/02/17 01/03/17 03/03/17	
Vitesse de vent sur le site SUCRERIE 20 18 16 17 18 18 18 18 18 18 18 18 18 18 18 18 18			

Observations :

Habitation située en limite Nord-Ouest du hameau. L'environnement sonore se caractérise par l'activité de la nature (oiseaux, vent dans les feuillages), par le bruit de la circulation sur l'autoroute A1 située à environ 1160m à l'Est et par le bruit de la voie ferrée située à 930 mètres à l'Est.

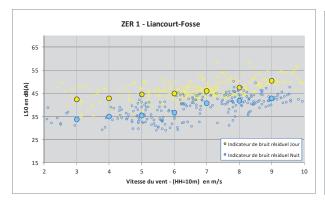
ZER 9	Localisation Damery	
Date début	20/02/2017	
Date Fin	03/03/2017	
Opérateur	MAV	
Durée d'intégration	1 seconde	
Spectre	1	
n° sonomètre	Solo n°60205 (9)	Edulat 1988
Justification du choix de l'emplacement :	ZER située au Sud-Ouest du p	projet éolien
85	23/02/17 25/02	2/17 27/02/17 01/03/17 03/03/17
20 18 16 14 12 12 10 88 88 88 4	Vitesse de v	ent sur le site SUCRERIE

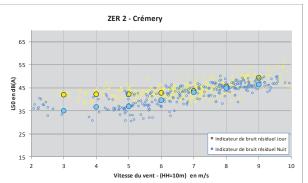
ZER 10	Localisation Parvillers-Le-Quesnoy
Date début	20/02/2017
Date Fin	03/03/2017
Opérateur	MAV
Durée d'intégration	1 seconde
Spectre	
n° sonomètre	BK n°2473274 (8)
Justification du choix de l'emplacement :	ZER située à l'Ouest du projet éolien
90 85	23/02/17 25/02/17 27/02/17 01/03/17 03/03/17
20 18 16 E 14	Vitesse de vent sur le site SUCRERIE

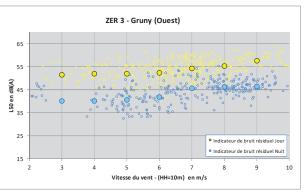

Habitation située en limite Est du hameau. L'environnement sonore se caractérise par l'activité

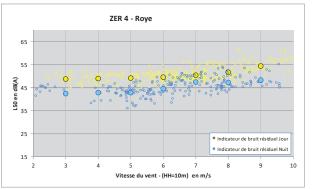
de la nature (oiseaux, vent dans les feuillages).

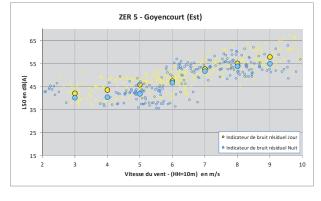
JLBi Conseils – n°2217-3A – février 2020 Page 69 sur 107 JLBi Conseils – n°2217-3A – février 2020 Page 70 sur 107

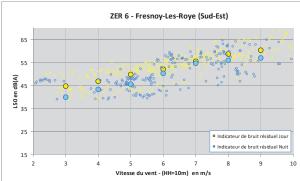

Observations:

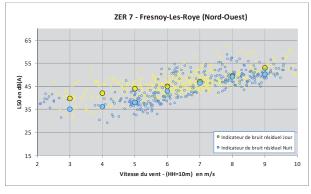

ZER 11 Localisation La Chavatte Date début 20/02/2017 Date Fin 03/03/2017 MAV Opérateur Durée d'intégration 1 seconde Spectre Solo n°61015 (12) n° sonomètre Justification du choix de ZER située au Nord-Ouest du projet éolien l'emplacement : 65 21/02/17 23/02/17 25/02/17 27/02/17 01/03/17 03/03/17

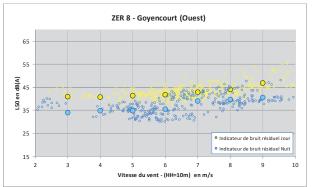


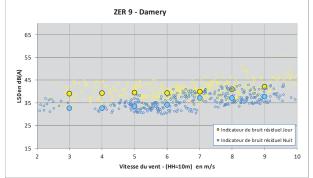

Observations : Habitation située en limite Nord-Est du hameau. L'environnement sonore se caractérise par l'activité de la nature (oiseaux, vent dans les feuillages).

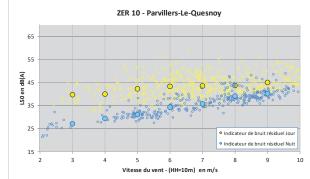

D. Corrélation bruit / vent

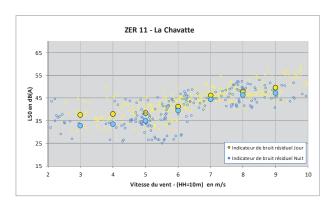




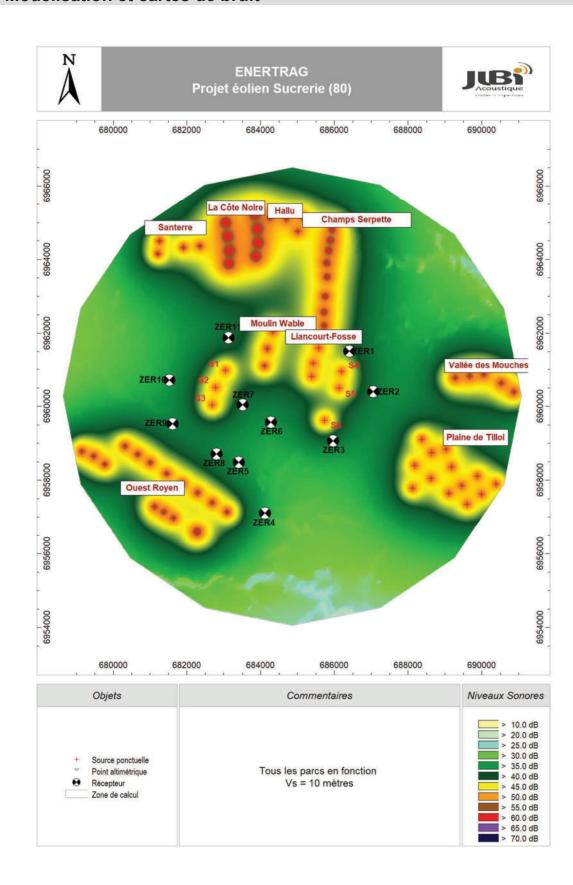


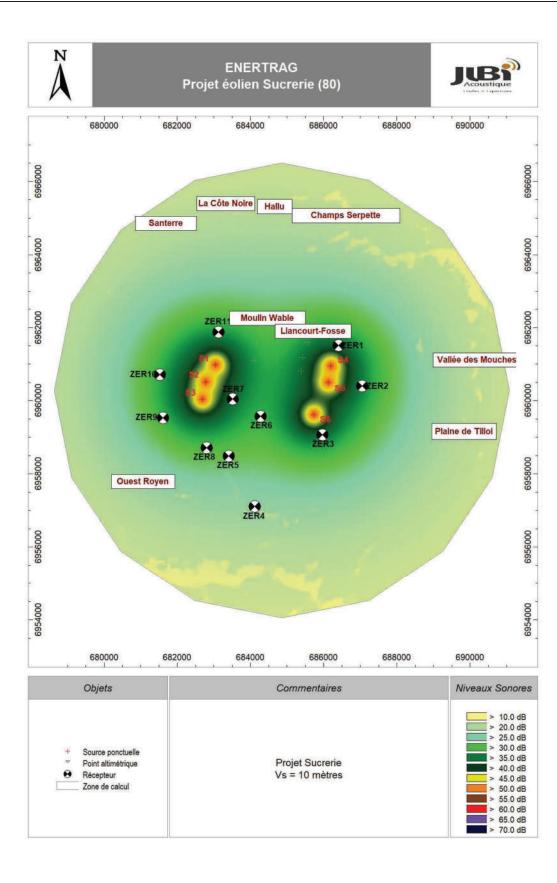






JLBi Conseils – n°2217-3A – février 2020 Page 71 sur 107 JLBi Conseils – n°2217-3A – février 2020 Page 72 sur 107





JLBi Conseils – n°2217-3A – février 2020 Page 73 sur 107

E. Modélisation et cartes de bruit

JLBi Conseils – n°2217-3A – février 2020 Page 74 sur 107

JLBi Conseils – n°2217-3A – février 2020 Page 75 sur 107

F. Documentations techniques

Documentation V150 4,0 et 4,2MW

6.3 Sound Curves, Mode 0/0-0S

	Sound Power Level at Hub H	leight
Conditions for Sound Power Level:	Measurement standard IEC 6140 Maximum turbulence at hub hei Inflow angle (vertical): 0 ±2° Air density: 1.225 kg/m³	
Wind speed at hub height [m/s]	Sound Power Level at Hub Height [dBA] Mode 0 (Blades with serrated trailing edge)	Sound Power Level at Hub Height [dBA] Mode 0-0S (Blades without serrated trailing edge)
3	91.1	93.4
4	91.3	94.0
5	93.2	97.1
6	96.4	100.5
7	99.9	103.8
8	103.3	106.6
9	104.9	108.0
10	104.9	108.0
11	104.9	108.0
12	104.9	108.0
13	104.9	108.0
14	104.9	108.0
15	104.9	108.0
16	104.9	108.0
17	104.9	108.0
18	104.9	108.0
19	104.9	108.0
20	104.9	108.0

Table 6-3: Sound curves, Mode 0/0-0S

JLBi Conseils – n°2217-3A – février 2020 Page 76 sur 107

7.3 Sound Curves, Power Optimized Mode PO1/PO1-0S

	Sound Power Level at Hub I	Height
Conditions for Sound Power Level:	00-11 ed. 3 ight: 30%	
Wind speed at hub height [m/s]	Sound Power Level at Hub Height [dBA] Power Optimized Mode PO1 (Blades with serrated trailing edge)	Sound Power Level at Hub Height [dBA] Power Optimized Mode PO1-08 (Blades without serrated trailing edge)
3	91.1	93.4
4	91.3	94.0
5	93.2	97.1
6	96.4	100.5
7	99.9	103.8
8	103.3	106.6
9	104.9	108.0
10	104.9	108.0
11	104.9	108.0
12	104.9	108.0
13	104.9	108.0
14	104.9	108.0
15	104.9	108.0
16	104.9	108.0
17	104.9	108.0
18	104.9	108.0
19	104.9	108.0
20	104.9	108.0

Table 7-3: Sound curves, Power Optimized Mode PO1/PO1-0S

JLBi Conseils – n°2217-3A – février 2020 Page 77 sur 107

10.3 Sound Curves, Sound Optimized Mode SO1

Sound I	Power Level at Hub Height						
Conditions for Sound Power Level:	Measurement standard IEC 61400-11 ed. 3 Maximum turbulence at hub height: 30% Inflow angle (vertical): 0 ±2° Air density: 1.225 kg/m ³						
Wind speed at hub height [m/s]	Sound Power Level at Hub Height [dBA] Sound Optimized Mode SO1 (Blades with serrated trailing edge)						
3	91.1						
4	91.3						
5	93.2						
6	96.4						
7	99.9						
8	102.7						
9	103.3						
10	103.3						
11	103.3						
12	103.3						
13	103.4						
14	103.4						
15	103.4						
16	103.4						
17	103.4						
18	103.4						
19	103.4						
20	103.4						

Table 10-3: Sound curves, Sound Optimized Mode SO1

JLBi Conseils – n°2217-3A – février 2020 Page 78 sur 107

11.3 Sound Curves, Sound Optimized Mode SO2

Sound Power Level at Hub Height Conditions for Sound Power Level: Measurement standard IEC 61400-11 ed 3									
Conditions for Sound Power Level:	Measurement standard IEC 61400-11 ed. 3 Maximum turbulence at hub height: 30% Inflow angle (vertical): 0 ±2° Air density: 1.225 kg/m³								
Wind speed at hub height [m/s]	Sound Power Level at Hub Height [dBA] Sound Optimized Mode SO2 (Blades with serrated trailing edge)								
3	91.1								
4	91.3								
5	93.2								
6	96.4								
7	99.9								
8	102.0								
9	102.0								
10	102.0								
11	102.0								
12	102.0								
13	102.0								
14	102.0								
15	102.0								
16	102.0								
17	102.0								
18	102.0								
19	102.0								
20	102.0								

Table 11-3: Sound curves, Sound Optimized Mode SO2

JLBi Conseils – n°2217-3A – février 2020 Page 79 sur 107

12.3 Sound Curves, Sound Optimized Mode SO3

Sound Power Level at Hub Height								
Conditions for Sound Power Level:	Measurement standard IEC 61400-11 ed. 3 Maximum turbulence at hub height: 30% Inflow angle (vertical): 0 ±2° Air density: 1.225 kg/m³							
Wind speed at hub height [m/s]	Sound Power Level at Hub Height [dBA] Sound Optimized Mode SO3 (Blades with serrated trailing edge)							
3	91.1							
4	91.3							
5	93.2							
6	96.3							
7	99.5							
8	99.5							
9	99.5							
10	99.5							
11	99.5							
12	99.5							
13	99.5							
14	99.5							
15	99.5							
16	99.5							
17	99.5							
18	99.5							
19	99.5							
20	99.5							

Table 12-3: Sound curves, Sound Optimized Mode SO3

JLBi Conseils – n°2217-3A – février 2020 Page 80 sur 107

3.1 Mode 0

Frequency	Hub height wind speeds [m/s]																	
	3 m/s	4 m/s	5 m/s	6 m/s	7 m/s	8 m/s	9 m/s	10 m/s	11 m/s	12 m/s	13 m/s	14 m/s	15 m/s	16 m/s	17 m/s	15 m/s	19 m/s	20 m/s
6.3 Hz	17.4	15.8	17.7	21.3	25.7	29.4	31.6	32.2	33.2	34.0	34.7	35.2	35.6	36.0	36.4	36.7	36.9	37.3
8 Hz	24.0	22.7	34.6	28.1	32.4	36.1	38.3	38.8	39.7	40.4	41,0	41.4	41.8	421	425	42.8	43.0	43.3
10 Hz	29.9	28.7	30.7	34.2	38.4	42.1	44.2	44.5	45.4	46.1	46.5	47.0	47.3	47.6	47.9	48.2	48.3	48.6
12.5 Hz	36.5	34.5	36.4	39.9	44.0	47.7	49.7	50.2	50,9	51.4	51.9	52.2	52.5	52.7	53.0	53.2	53.4	53.6
16 Hz	41.3	40.5	42.4	45.9	49.9	53.5	55.5	55.9	56.5	57.0	57.3	57.6	57.9	58.1	58.4	58.5	58.7	58.9
20 Hz	46.3	45.5	47,5	50.9	54.9	58.5	60.4	60.7	51.2	61,6	52.0	62.2	624	62.6	62.9	63.0	63.1	63.3
25 Hz	50.8	50.3	522	55.6	59.5	53.1	65.D	65,2	65.7	66.0	66.3	66.5	66.7	66.9	67.1	67.2	57.3	67.4
31.5 Hz	55.3	54.8	56.8	50.1	64.0	67.5	69.4	69.6	70.0	70.2	70.5	70.7	70.8	70.9	71.1	712	71.3	714
40 Hz	59.5	59.2	61.1	64.4	68.2	71.8	73.6	73.7	74.0	74.3	74.5	74.6	74.7	748	75.0	75.0	75.1	75.7
50 Hz	63.1	62.9	64.8	68.1	71.9	75.A	77.1	77.3	77.5	77.7	77.9	78.0	7B.5	78.1	78.3	78,3	78.4	78.9
63 Hz	66.5	66.3	68.3	71.5	75.3	78.8	90.5	80.5	90.8	80.9	81.0	81.1	81.2	81.3	81.4	81.4	81.4	81.5
80 Hz	69.6	69.6	71.5	74,8	78.5	81.9	83.6	83.7	83.8	83.9	84.0	84.1	84.1	84.2	84.2	84.3	84.3	84.3
100 Hz	72.2	72.3	742	77.5	81.1	84.5	86.2	86.3	86.3	86.4	86.5	96.5	86.5	86.6	86.6	85.6	86.7	86.7
125 Hz	74.5	74.6	76.5	79.8	83.4	86.8	88.5	88.5	88.5	88.6	88.6	88.7	88.7	88.7	88.7	88.7	88.7	88.0
160 Hz	76.7	76.8	78.8	82.0	85.5	89.0	90.6	90.6	90.6	90.6	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90.7
200 Hz	78.3	78.5	80,4	83.6	87.2	90.6	92.2	92.2	92.2	92.2	92.2	92.2	922	92.2	922	922	92.2	92.
250 Hz	79.6	79.8	81.7	84.9	88.5	91.9	93.5	93.4	93.4	93.4	93.4	93.4	93.4	93.4	93.3	93.3	93.3	93.7
315 Hz	80.6	80.8	82.8	86.0	89.4	92.8	94,4	94.4	94.4	94.4	94.3	94.3	94.3	94.3	943	94.3	94.2	94.2
400 Hz	81.3	81.5	83.4	86.5	90.1	93.5	95.1	95.1	95.0	95.0	95.0	94.9	94.9	94.9	94.9	94.9	94.9	94.8
500 Hz	81.5	81.8	83.7	86.9	90.4	93.8	95.4	95.3	95.3	95.3	95.2	95.2	95.2	95.2	95.2	95.1	95.1	95.1
630 Hz	81.5	81.8	83.7	96.9	90.3	93.7	95.3	95.3	95.3	95.2	95.2	95.2	95.2	95.2	95.1	95.1	95.1	95.
800 Hz	81.1	81.4	83.3	86.5	89.9	93.3	94.9	94.9	94.9	94.8	94.8	94.8	94.8	94.8	948	94.8	94.8	94.8
1 kHz	80.4	80.7	82.5	85.7	89.2	92.6	94.2	94.2	94.2	94.2	94.2	94.2	94.2	94.2	94.2	94.1	94.1	94
1.25 kHz	79.4	79.6	81.5	84.7	88.2	91.5	93.1	93.2	93.2	93.2	93.2	93.2	93.2	93.2	93.2	93.2	93.2	93.7
1.6 kHz	77.9	78.0	79.9	83.1	86.6	90.0	91.5	91.7	91.7	91.7	91.8	91.8	91.8	91.8	91.9	91.9	91.9	91.9
2 kHz	76.3	76.3	78.1	B1.3	84.9	88.3	89.9	90.0	90.1	90.1	90.2	90.2	90.2	90.3	90.3	90.3	90.4	90.4
2.5 kHz	74.2	74.2	76.1	79.3	82.8	86.2	87.9	88.0	88.1	88.2	88.3	88.3	88.4	88.4	88.5	88.5	88.5	88.6
3.15 kHz	71.8	71.7	73.5	76.7	80.3	83.8	85.4	85.6	85.7	85.9	86.0	96.1	86.1	86.2	86.3	86.3	86.4	86.4
4 kHz	69.0	68.8	70.6	73.8	77.4	80,9	82.6	82.7	82.9	83.1	83.3	83.4	83.5	83.6	83.7	83.7	83.8	83.5
5 kHz	66.0	65.6	67.5	70.7	74.4	77.8	79.5	79.7	80.0	80.2	80.4	80.6	80.7	80.8	80.9	81.0	81.1	81.2
6.3 kHz	62.5	52.1	63.9	57.1	70.8	74.3	76.1	76.3	76.6	76.9	77.2	77.3	77.5	77.6	77.8	77.9	77.9	78.
B KHZ	58.6	58.0	59.8	63.1	66.8	70.3	721	72.4	72.8	73.2	73.4	73.7	73.8	740	74.2	743	74.4	74.5
10 kHz	54.6	53.9	55.7	58.9	62.8	66.2	68.1	68.4	68.9	69.3	69.7	69.9	70.1	70.3	70.5	70.7	70.8	71.0
A-wgt	91.1	91.3	93.2	96.4	99.9	103.3	104.9	104.9	104.9	104.9	104.9	104.9	104.9	104.9	104.9	104.9	184.9	104

Table 1: V150-4.0MW Mode 0, expected 1/3 octave band performance, (Blades with serrated trailing edge)

3.2 Mode PO1

7	Hub height wind speeds [m/s]																	
Frequency	3 m/s	4 m/s	5 m/s	6 ants	7 m/s	8 114	9 m/s	10 m/s	11 m/s	12 m/s	13 m/s	14 m/s	15 m/s	16 m/s	17 m/s	15 m/s	19 m/s	20 m/s
6.3 Hz	17,4	15.8	17.7	21.3	25.7	29.4	31.6	32.1	33.1	34.0	34.5	35.1	35.5	35.9	35.3	36.6	37.0	37.
8 Hz	24.0	22.7	24.6	28.1	32.4	36.1	38.3	38.7	39.6	40.4	40.9	41.3	41.7	421	425	427	43.0	43.
10 Hz	29.9	28.7	30.7	34.2	38,4	42.1	44.2	44.5	45.4	46.0	45.5	46.9	47.2	47.5	47.9	48.1	48.4	48
12.5 Hz	35.5	34.5	36.4	39.9	44.0	47.7	49.7	50.0	50.8	51.4	51.8	52.1	52.4	52.7	53.0	53.2	53.4	53
16 Hz	41.3	40.5	42.4	45.9	49.9	53.5	55.5	55.8	55.4	56.9	57.3	57.5	57.8	58.1	58.3	58.5	58.7	58
20 Hz	46.3	45.5	47.5	50.9	54.9	58.5	50,4	50.6	51.2	51.5	51.9	62.2	62.4	526	62.8	63.0	63.2	53
25 Hz	50.8	50.3	52.2	55.6	59.5	63.1	65.0	65.2	65.6	56.D	66.3	86.5	65.7	66.8	67.0	67.2	67.3	67.
31.5 Hz	55.3	54.8	56.8	60,1	64.0	67,5	59.4	69,5	69.9	70.2	70.4	70.6	70.8	70.9	71.1	71.2	71.3	71
40 Hz	59.5	59.2	61.1	54.4	68.2	71.8	73.6	73.7	74.0	74.2	74.4	74.5	74.7	74.8	74.9	75.0	75.1	75
50 Hz	63.1	52.9	64.8	58.1	71.9	75,4	77.1	77.2	77.5	77.7	77.8	77.9	78.0	78.1	78.2	78.3	78.4	78
63 Hz	66.5	66.3	68.3	71.6	75.3	78.8	80.5	83.6	80.8	80,9	81.0	81.1	81.2	81.3	81.3	81.4	81.5	81
80 Hz	69.6	69.6	71.5	74.8	78.5	81.9	83.6	83.7	83.8	83.9	84.0	84.1	841	84.2	84.2	84.3	84.3	84
100 Hz	72.2	72.3	74.2	77.5	81,1	84.5	86.2	86.2	86.3	86.4	86.5	86.5	86.5	86.6	86.6	86.6	86.7	86
125 Hz	74.5	74.6	76.5	79.8	83.4	86.8	88.5	88.5	88.5	88.5	88.6	88.6	88.7	88.7	88.7	88.7	88.7	88
160 Hz	76.7	76.8	78.8	82.0	85.5	89.0	90.5	90.6	90.5	90.6	90.7	90.7	90.7	90.7	90.7	90.7	90.7	90
200 Hz	78.3	78.5	80,4	83.6	87.2	90.6	92.2	92.2	92.2	92.2	92.2	92.2	92.2	92.2	92.2	92.2	92.2	92
250 Hz	79.6	79.8	81.7	84.9	88.5	91.9	93.5	93.4	93.4	93.4	93.4	93.4	93.4	93.4	93.3	93.3	93.3	93
315 Hz	80.6	80.8	82.8	85.D	89.4	92.8	94.4	94.4	94.4	94.4	94.3	94.3	94.3	94.3	94.3	94.3	94.2	94
400 Hz	81.3	81.5	83.4	86.6	90.1	93.5	95.1	95.1	95.0	95.0	95.0	94.9	94.9	94.9	94.9	94.9	94.9	94
500 Hz	81.5	81.8	83.7	95.9	90.4	93.8	95.4	95.3	95.3	95.3	95.2	95.2	95.2	95.2	95.2	95.2	95.1	95
630 Hz	81.5	81.8	83.7	88.9	90.3	93.7	95.3	95.3	95.3	95.2	95.2	95.2	95.2	95.2	95.1	95.1	95.1	95
800 Hz	81.1	91.4	83.3	86.5	89.9	93.3	94.9	94.9	94.9	94.8	94.8	94.8	94.8	94.8	94.8	94.8	94.8	94
1 kHz	80.4	80.7	82.5	85.7	89.2	92.6	94.2	94.2	94.2	94.2	94.2	94.2	94.2	94.2	94.2	94.1	94.1	94
1.25 kHz	79.4	79.6	81.5	84.7	88.2	91.5	93,1	93.2	93.2	93.2	93.2	93.2	93.2	93.2	93.2	93.2	93.2	93
1.6 kHz	77.9	78.0	79.9	83.1	86.6	90.0	91.6	91.6	91.7	91.7	91.8	91.8	91.8	91.8	91.9	91.9	91.9	91
2 kHz	76.3	76.3	78.1	81.3	84.9	88.3	89.9	90.0	90.0	90.1	90.2	90.2	90.2	90.3	90.3	90.3	90.4	90
2.5 KHz	74.2	74.2	76.1	79.3	82.8	86.2	87.9	87.9	88.1	88.2	88.3	88.3	88.4	88.4	88.5	88.5	88.6	88
3.15 kHz	71.8	71.7	73.5	76.7	80.3	83.8	85.4	85.5	85.7	85.9	86.0	86.0	86.1	86.2	86.3	86.3	86.4	86
4 kHz	69.0	68.8	70.6	73.8	77.4	80.9	82.6	82.7	82.9	83.1	83.2	83.4	83.4	83.5	83.6	83.7	83.8	83
5 kHz	66.0	65.6	67.5	70.7	74.4	77.8	79.5	79.7	80.0	80.2	90.4	80.5	80.6	80.8	80.9	81.0	81.1	81
6.3 kHz	62.5	62.1	63.9	67.t	70.8	74.3	76.1	76.2	76.6	76.9	77.1	77.3	77.4	77.6	77.7	77.8	78.0	78
8 kHz	58.6	58.0	59.8	63.1	86.8	70.3	721	72.3	72.8	73.1	73.4	73.6	73.8	74.0	74.1	74.3	74.4	74
10 kHz	54.6	53.9	55.7	58.9	62.8	66.2	68.1	68.3	68.9	69.3	69.6	69.8	70.1	70.3	70.5	70.6	70.8	70
A-wgt	91.1	91.3	93.2	96.4	99.9	103.3	104.9	104.9	104.9	104,9	104.9	104.9	104.9	104.9	104.9	104.9	104.9	104

Table 3: V150-4.2MW PO1, expected 1/3 octave band performance, (Blades with serrated trailing edge)

 JLBi Conseils – n°2217-3A – février 2020
 Page 81 sur 107

 JLBi Conseils – n°2217-3A – février 2020
 Page 82 sur 107

Documentation E92

Lw Globales et Spectrales – Mode 1 Doc n°RA-120124-01-A du 11 mai 2012

Spectre de puissance acc	oustique pon	déré A par	bande de	1/3 octave	Pour Vs	5 m/s	(vitesse s	tandarisée	à h=10m)				
Fréquence (Hz)	50	63	80	100	125	160	200	250	315	480	500	630	
Lw en dBA	77,8	80,2	83,7	89,3	85,9	85,4	85,6	87,4	89,3	88,8	89,2	91,3	1
Frequence (Hz)	800	1000	1250	1600	2000	2500	3150	4000	5000	6380	8000	10000	Global en dB(A)
Lw en dBA	90,6	89,9	88,5	86,1	82,5	79	74,3	69,2	64	64	66,7	74	100,1
Spectre de puissance acc	oustique pon	déré A par	bande d'o	ctave	EA E		125	m	5				
Fréquence (Hz)	8	125	250	500	1000	2000	4000	8000	1				
Lw en dBA	0,88	92,0	92,5	94,7	94,5	88,2	75,8	75.1					
	927	089000001 F				26-75		The Participant	68 303057I				
Spectre de puissance acc	oustique pon	déré A par	bande de	1/3 octave	Pour Vs	6 m/s	(vitesse s	tandarisée	à h=10m)				_
Fréquence (Hz)	50	83	80	100	125	160	200	250	315	400	500	630	
Lw en dBA	79,9	80,8	83,9	86,9	89,1	86	86,7	89	90,4	90,2	91,2	94,9	
Frequence (Hz)	800	1000	1250	1800	2000	2500	3150	4000	5000	6300	8000	10000	Giobal en dB(A)
Lw en dBA	93,4	93,2	91,6	88,8	84,7	81,1	76,1	70,7	65,2	66,1	69,1	76	102,3
Spectre de puissance acc	oustique pon	idéré A par	bande d'o	ctave	400 400 40		300	ar ar g					
Frequence (Hz)	63	125	250	500	1000	2000	4000	8000					
Lw en dBA	86,7	92,3	93,7	97.4	97,6	90,7	77.5	77,2					
		0.0						025 95	V.				
Spectre de puissance acc					Pour Vs		(vitesse s	tandarisée					-
Fréquence (Hz)	50	63	80	100	125	180	200	250	315	400	500	630	1
Lw en dBA	79,6	80,8	83,7	85,8	91,8	87,2	87	90,7	92	93,5	92,7	94,9	
Fréquence (Hz)	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000	Global en dB(A)
Lw en dBA	94,4	94,3	92,8	90,2	86,8	82,9	78	73,2	67,1	66,3	67,8	73,8	103,5
Spectre de puissance acc	oustique pon	déré A par	bande d'o	ctave			4						
Fréquence (Hz)	63	125	250	500	1000	2000	4000	8000					
Lw en dBA	88,5	93,8	95,1	98,6	98,7	92,4	79,5	75,4					
				acare united	MADOUM RESERVE	V0000000000000000000000000000000000000			100 1010 100 100				
Spectre de puissance acc	_						(vitesse s	tandarisée					09
Fréquence (Hz)	50	63	80	100	125	160	200	250	315	400	500	630	4
Lw en dBA	78,7	81,7	84,4	86,2	92,5	87,9	87,6	91,7	92,7	94,2	93,4	96,1	
Frequence (Hz)	800	1000	1250	1600	2000	2500	3150	4000	5000	6380	8000	10006	Global en dB(A)
Lw en dBA	95,5	95,4	93,9	91,4	88	84	79,1	74,6	69	67,1	67,9	72,7	104,5
Spectre de puissance acc	oustique pon		bande d'o	ctave	100 S	5	95	29 10	6				
Fréquence (Hz)	R	125	250	500	1000	2000	4000	8000					
Lw en dBA	87.0	94,5	95,9	99,5	99,8	93,5	80,7	74,8					
es as an as	30	Nesson 2	V.D. 107.450	nost ov	25L 1033	ME 700	C97 G	=7950	88 63865				
Spectre de puissance acc	oustique pon	déré A par	bande de	1/3 octave	Pour Vs	9 m/s	(vitesse s	tandarisée	à h=10m)				_
Frequence (Hz)	50	63	80	100	125	160	200	250	315	460	500	636	
Lw en dBA	80,2	83,1	85,6	87,4	94,3	89,9	88,1	91,9	92,4	93,5	93,2	95,6	
Frequence (Hz)	800	1000	1250	1600	2000	2500	3150	4000	5000	6300	8000	10000	Global en dB(A)
Lw en dBA	95,7	98,1	95,1	93,2	90,1	86,3	81,6	77,1	7.1	67,2	68,1	73,2	105,0
	7 1 m	dans A mas	handa d'o	ctave	No.		781	21 00		A I	AL		000
Spectre de puissance acc	oustique pon	idere A par	partice do						-				
Spectre de puissance acc Fréquence (Hz)	oustique pon	125	250	500	1000	2000	4990	8880]				

JLBi Conseils – n°2217-3A – février 2020 Page 83 sur 107

Documentation E103

Lw Globales - Mode 0s

Doc n°D0439125-3 / DA du 06 décembre 2016

Vitesse du vent (v _s) à	Niveau de puissance acoustique en dB(A)										
10 m de hauteur	Hauteur du moyeu 85 m	Hauteur du moyeu 98 m	Hauteur du moyeu 108 m	Hauteur du moyeu 125 m	Hauteur du moyeu 138 m						
3 m/s	90,5	91,0	91,3	91,7	92,0						
3,5 m/s	93,1	93,3	93,6	94,0	94,3						
4 m/s	95,9	96,3	96,6	97,0	97,3						
4,5 m/s	98,5	98,9	99,2	99,6	99,9						
5 m/s	100,8	101,1	101,3	101,6	101,8						
5,5 m/s	102,4	102,7	102,9	103,1	103,2						
6 m/s	103,3	103,5	103,6	103,7	103,8						
6,5 m/s	103,9	104,0	104,1	104,2	104,2						
7 m/s	104,3	104,4	104,5	104,6	104,7						
7,5 m/s	104,7	104,8	104,9	105,0	105,0						
8 m/s	105,0	105,0	105,0	105,0	105,0						
8,5 m/s	105,0	105,0	105,0	105,0	105,0						
9 m/s	105,0	105,0	105,0	105,0	105,0						
9,5 m/s	105,0	105,0	105,0	105,0	105,0						
10 m/s	105,0	105,0	105,0	105,0	105,0						
10,5 m/s	105,0	105,0	105,0	105,0	105,0						
11 m/s	105,0	105,0	105,0	105,0	105,0						
11,5 m/s	105,0	105,0	105,0	105,0	105,0						
12 m/s	105,0	105,0	105,0	105,0	105,0						

JLBi Conseils – n°2217-3A – février 2020 Page 84 sur 107

Lw Spectrales – Mode 0s (98m)Doc n°D0486226-2a / DA du 17 octobre 2016

One-third	v _s at a	a height	of 10 r	n in m/s	5					
octave band level centre fre- quency in Hz	3	3.5	4	4.5	5	5.5	6	6.5	7	7.5
20	48.4	49.9	51.9	53.6	54.9	55.8	56.1	56.2	56.3	56.8
25	54.2	55.8	58.0	59.8	61.3	62.3	62.7	62.7	62.9	63.4
31.5	59.2	61.0	63.3	65.3	66.9	68.0	68.4	68.5	68.7	69.2
40	63.5	65.4	67.9	70.0	71.7	72.9	73.3	73.4	73.6	74.2
50	67.2	69.2	71.8	74.0	75.8	77.1	77.5	77.7	77.9	78.4
63	70.3	72.4	75.1	77.3	79.3	80.6	81.1	81.2	81.5	82.0
80	73.0	75.1	77.9	80.2	82.2	83.6	84.1	84.2	84.5	85.0
100	75.0	77.1	79.9	82.3	84.3	85.7	86.3	86.4	86.7	87.3
125	76.1	78.2	81.0	83.4	85.4	86.8	87.4	87.6	87.9	88.5
160	76.8	78.9	81.7	84.1	86.2	87.6	88.2	88.5	88.8	89.3
200	77.5	79.7	82.4	84.8	86.9	88.3	89.0	89.3	89.7	90.2
250	78.5	80.7	83.4	85.9	87.9	89.3	90.0	90.4	90.8	91.4
315	79.5	81.7	84.4	86.8	88.9	90.3	91.1	91.6	92.0	92.5
400	80.3	82.6	85.3	87.8	89.8	91.3	92.2	92.8	93.3	93.7
500	80.7	83.2	86.1	88.6	90.7	92.2	93.2	93.9	94.4	94.8
630	80.7	83.2	86.3	89.0	91.3	92.9	93.9	94.7	95.2	95.5
800	80.2	82.8	85.9	88.8	91.1	92.8	93.8	94.5	95.0	95.4
1000	79.9	82.4	85.6	88.4	90.8	92.6	93.4	94.0	94.5	94.9
1250	79.7	82.2	85.3	88.1	90.5	92.2	92.9	93.4	93.8	94.3
1600	79.4	81.7	84.8	87.5	89.9	91.6	92.2	92.5	92.9	93.4
2000	78.3	80.5	83.6	86.3	88.6	90.2	90.7	90.9	91.2	91.8
2500	76.5	78.8	81.9	84.5	86.8	88.3	88.8	88.9	89.2	89.8
3150	74.0	76.4	79.6	82.3	84.6	86.1	86.5	86.6	86.8	87.4
4000	70.2	72.8	76.2	79.0	81.4	83.0	83.4	83.5	83.7	84.4
5000	65.1	67.8	71.3	74.3	76.9	78.6	79.1	79.2	79.4	80.1
6300	58.0	60.7	64.2	67.3	70.0	71.8	72.3	72.5	72.8	73.5
8000	48.0	50.8	54.3	57.3	60.0	61.8	62.4	62.6	62.9	63.6
10000	35.0	37.8	41.3	44.4	47.1	48.9	49.5	49.7	50.0	50.7

JLBi Conseils – n°2217-3A – février 2020 Page 85 sur 107

Documentation GE 103-85

Hub Height Win	nd Speed	4	5	6	7	а	9	10	11	12	13	14.0- cut ou
Wind speed at 1 height of 75m (i		2.9	3.6	6.3	5.1	5.8	6.5	7.2	8.0	8.7	9.4	10.1- cut ou
Wind speed at 1 height of 85m (i		2.8	3.6	4.3	5.0	5,7	6.4	7.1	7.8	8.5	9.3	10.0- cut ou
Wind speed at 1 height of 96.3m		8.5	3.5	4,2	4.9	5,6	6.3	7.0	7.7	8.4	9.1	9.5-cu out
	32	648	64.6	54.8	68.0	70:8	73.1	74.4	74.5	74.4	74.4	74.3
	63	76.4	76.2	76.7	79.9	82.5	84.6	86.2	186.2	86,1	86.0	85,9
	125	83.5	83.6	84.7	87.8	90-2	92.1	93.6	93.6	93.6	93.5	933
	250	86.1	86.6	5.88	5.16	93.6	95.4	96.2	96.0	95.8	95.5	95.2
Frequency	500	879	88.0	88.7	91.9	94.6	96.8	97.8	97.7	97,4	97.2	96.7
(Hz)	1000	90.1	90.1	90.8	934	95.7	97.6	99.2	99.3	99;4	99.6	100/
	2000	88.7	90.1	91.8	94,5	96.5	97,9	99.0	99.2	99,4	99.5	99.8
	4000	80.2	81.3	84.5	88.2	99.7	92.4	933	93.3	93,2	92.9	91.8
	8000	61.4	62.2	63.2	67.5	712	73.8	746	74.2	73,7	73.1	72.2
	16000	13.1	17.3	21.3	24.6	27.1	29.2	30.7	30.5	50.3	30.4	29.6
Total Sound Por	wer Level (dB)	95.0	95.5	96.8	99.7	102.0	103.8	105.0	105.0	105:0	105.0	105.0

Table 1: Normal Operation Apparent Sound Power Level as a function of wind speeds

JLBi Conseils – n°2217-3A – février 2020 Page 86 sur 107

Appendix I - Calculated 1/3rd Octave Band Apparent Sound Power Level LWAX

Hub Height Win	d Speed	4	5	6	7	8	9	10	11	12	13	14-cut
Wind speed at 1 height of 75m (r		2.9	3.6	4.3	5.1	5.8	6.5	7.2	8.0	8.7	9.4	10.1- cut ou
Wind speed at 1 height of 85m (r		2.8	3.6	4.3	5.0	5.7	6.4	7.1	7.8	8.5	9,3	10.0- cut ou
Wind speed at 1 height of 98.3m		28	3.5	4.2	4.9	5.6	6.3	7.0	7,7	8.4	9.1	9.8-cu out
	25	53.9	53.8	54.0	57.2	60.0	62.5	63.9	63.9	63.8	63.8	63.6
	32	58.7	58.6	58.7	61.9	64.7	67.1	68.4	68.5	68.4	68.4	68.3
	40	63.1	62.9	63.1	66.3	69.0	71.3	72.6	727	72.6	72.6	72.5
	50	66.6	66.4	66,7	69:8	72,5	74.8	76.1	76.1	76.0:	76.0	753
	63	70.7	70.5	70.9	74.1	76,7	78.9	80.4	80,4	(B0.3	80.2	80.
	80	74:4	74.2	7.4/8	77.9	80.5	82.6	84.3	84,3	84.1	84.0	833
	100	77.0	76.9	77.7	80.0	83.3	85.3	0.7.0:	87.0	0.7:0	86,9	86,
	125	78,7	78.8	79.8	82,9	85,3	.87.2	88.7	88.8	88.7	88.7	883
	160	80.0	80.1	81.5	84.6	87.0	88.8	90.2	90.2	90.1	90.1	89.
	200	80.4	80.8	82.4	85,4	87.8	89.6	90.7	90.6	90.5	90.4	90.
	250	81.2	81.7	83.5	86.5	88.8	90.6	91.3	912	91.0	90,8	90.
	315	82.2	82.7	84,2	87.3	89.7	91.6	92.2	91,9	91.6	91.3	90.
	400	82.4	828	83.9	87.1	89.7	91.7	92,4	92,0	91.7	91.4	90.
	500	83.2	83.3	83.9	87.2	89.9	92.2	93.1	92.9	92.6	92.4	91.
Frequency	630	83,7	83,5	83.9	87.2	90.0	92.3	93,6	93.6	93.5	93.3	92.
(Hz)	800	84.2	84.0	84.4	87,4	90.0	92.3	93.9	94.0	94.0	94.0	93.
	1000	85.1	85.0	85,6	88.3	90.6	92.5	942	94.3	94.5	94.6	95
	1250	86.3	86.6	87.5	89.0	91.9	93.5	95.0	95,1	95.4	95.7	96.
	1600	85.5	86.4	87.7	5.06	92.0	93,4	94.6	94.9	95.1	95.4	96.
	2000	89.1	85.7	87.4	5.06	92.0	93,4	94.5	94.7	94.9	95.0	95.
	2500	81.4	83.5	85.9	89.0	91.0	92.5	93.5	93.6	93.7	93.7	93.
	3150	78.3	80.0	83.0	86.5	88.9	90.5	91.5	91.5	91.5	91.2	90.
	4000	74.3	74.4	78,4	82.2	84.9	86.7	87.6	87.5	87.3	86.8	85.
3	5000	69.6	68.5	71.8	76.2	79.8	81.5	82.4	82.2	81.9	81.2	79,
	6300	61.2	618	62.9	67.2	71.0	75.6	74.3	74.0	73,4	72.8	71.
3	8000	48.2	51.6	51.9	55.0	58.1	61.1	62.0	61.5	67.5	60.8	60,
-	10000	32.4	36.5	38.8	41.6	43.8	46.3	47.5	47.3	473	46.9	46.
9	12500	13.1	17.3	21.3	24,6	27.1	29.2	30.7	30.5	30,3	30,4	-29,
	16000	-13.7	-9.8	-5,4	-0.4	28	4.9	6.6	6.4	62	6.0	4.6
	20000	-42.6	-39.1	-34,7	-28.8	-24.6	-71A	-19.9	-20.3	-20.6	-20.9	-23
Total Sound Pay	ver Level IdBI	95.0	95.5	96.8	99.7	102.0	103.8	105.0	105.0	105.0	105.0	105.0

Table 2: Apparent 1/3^{nt}-Cictave Band Sound Power Levels (A-weighted) as function of Wind Speed

JLBi Conseils – n°2217-3A – février 2020 Page 87 sur 107

ENERTRAG – Projet éolien Sucrerie (80) – Etude d'impact acoustique

Documentation V117

6.3 Sound Curves, Mode 0/0-0S

Sound Power Level at Hub Height Conditions for Sound Macourement standard IEC 61400 44 ed 2								
Conditions for Sound Power Level:	und Measurement standard IEC 61400-11 ed. 3 Maximum turbulence at hub height: 30% Inflow angle (vertical): 0 ±2° Air density: 1.225 kg/m³							
Wind speed at hub height [m/s]	Sound Power Level at Hub Height [dBA] Mode 0 (Blades with serrated trailing edge)	Sound Power Level at Hub Height [dBA] Mode 0-0S (Blades without serrated trailing edge)						
3	91.8	93.3						
4	92.1	93.7						
5	93.9	96.0						
6	97.1	99.6						
7	100.4	103.0						
8	103.4	106.1						
9	106.0	108.6						
10	106.8	109.3						
11	106.8	109.3						
12	106.8	109.3						
13	106.8	109.3						
14	106.8	109.3						
15	106.8	109.3						
16	106.8	109.3						
17	106.8	109.3						
18	106.8	109.3						
19	106.8	109.3						
20	106.8	109.3						

Table 6-3: Sound curves, Mode 0/0-0S

JLBi Conseils – n°2217-3A – février 2020 Page 88 sur 107

3	Hub height wind speeds [m/s]																	
Frequency	3 m/s	4 m/s	5 m/s	6 m/s	7 m/s	8 m/s	9 m/s	10 m/s	11 m/s	12 m/s	13 m/s	14 m/s	15 m/s	16 m/s	17 m/s	18 m/s	19 m/s	20 m/s
6.3 Hz	16.4	16.3	18.3	22.0	25.5	28.7	31.2	31.7	32.0	32.5	32.7	32.9	33.1	33.2	33.4	33.5	33.7	33.8
8 Hz	23.2	23.4	25.5	29.2	32.6	35,8	38.3	38.8	39.0	39.3	39.3	39.5	39.6	39.6	39.7	39.7	39.9	39.9
10 Hz	28.9	29.3	31.5	35.2	38.6	41.7	44.2	44.8	44.9	45.0	449	44.9	449	44.9	44.9	44,9	45.0	45.0
12.5 Hz	35.7	36.5	38.9	42.4	45.8	48.8	51,4	52.1	52.0	51.8	51.5	51.4	51.3	51.2	51.1	51.0	51.0	51.0
16 Hz	41.6	42.6	45.0	48.5	51.9	54.8	57.A	58.1	58.0	57.6	57.3	57.1	57.0	56.8	56.7	56.6	56.6	56.5
20 Hz	47.6	48.4	50.8	54.3	57.7	60.6	63.1	63.8	63.8	63.5	63.2	63.1	63.0	629	628	62.7	62.8	62.7
25 Hz	52.1	52.8	55.1	58.6	62.0	65.0	67.6	68.2	68.2	68.1	67.9	67.8	67.7	67.8	67.6	67.5	67.6	67.5
31.5 Hz	56.3	57,0	59.3	62.9	66.3	69.3	71.8	72.5	72.4	723	72.5	72.1	72.0	7t.9	71.9	71.8	71.9	71.8
40 Hz	60.3	60.8	63.1	66.6	70.0	73.1	75.6	76.2	76.3	76.3	75.2	76.2	75.2	76.1	75.1	76.1	76.2	76.2
50 Hz	64.7	65.0	67.2	70.9	74.3	77.A	79.9	80.5	80.6	80.7	80.7	80.7	80.8	80.8	80.8	80.8	80.9	80.9
63 Hz	S. Common	Bearing	S AND DO	Same La	C TOWN	THE SECTION	San Wall	NAME OF TAXABLE PARTY.	Curses P	The same and	Carrent St	- Aurena	Canada T	Thames	S. Carriero	F. Ampon	anne C	1.050341
	69.7	69.5	71.6	75.3	78.8	82.0	84.5	85.1	85.4	85.8	86.0	86.3	86.5	86.6	86.7	86.8	87.0	87.1
80 Hz	70.6	71.0	73.3	76.9	80.3	83,4	85.9	86.5	86.6	86.6	85.6	86.6	86.6	86.6	86.6	86.6	86.7	86.7
100 Hz	74.0	74.6	76.9	80.5	84.0	87.0	89,5	90.2	90.2	90.1	89.9	89.9	89.9	89.8	89.7	89.7	89.7	89.7
125 Hz	77.A	.77.7	79.9	83.5	86.9	90.0	92.5	93.1	93.2	93.3	93.3	93.4	93,4	93.4	93.5	93.5	93.6	93.6
160 Hz	76.5	77.1	79.5	83.1	86.5	89.5	92.0	92.7	92.7	92.6	92.4	92.3	92.3	92.2	92.1	92.1	92.1	92.1
200 Hz	78.6	78.8	80.9	84.6	88.0	91.1	93.6	94.2	94,4	94.6	94.7	94.8	94.9	94.9	95.0	95.0	95.1	95.2
250 Hz	80.5	81.1	83,4	87.0	90.4	93.5	96,0	96.7	96.7	96.6	96.4	96.3	96.3	96.2	96.2	96.1	96.2	96.1
315 Hz	82.0	82.3	84.6	88.2	91.6	94.7	97.2	97.8	98.0	98.1	98.1	98,1	98.2	98.2	98.2	98.2	98.3	98.3
400 Hz	81.6	81.9	84.2	87.8	91.3	94.4	96.9	97.5	97.6	97.7	97.7	97,8	97,8	97,8	97.8	97.8	97.9	98.0
500 Hz	82.0	82.4	84.6	88.2	91.7	94.8	97.3	97.9	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98.0	98,1	98.1
630 Hz	83.1	83.6	85.8	89.4	92.9	96.0	98.5	99.1	99.2	99.2	99.2	99.2	99.2	99.2	99.2	99.2	99.2	99.3
800 Hz	83.8	84.3	86.6	90.2	93.6	96.7	99.2	99.9	99.9	99.9	99.8	99.7	99.7	99.7	99.7	99.6	99.7	99.7
1 kHz	84.4	84,8	87.0	90.6	94.1	97.1	99.6	100.3	100.4	100.4	100.4	100.4	100.4	100.4	100.4	100.4	100,5	100
1.25 kHz	83.2	83.6	85.8	89.4	92,8	95,9	98.4	99.0	99.1	99.2	99.1	99.2	99.2	99.2	99.2	99.2	99.3	99.3
1.6 kHz	81.7	82.2	84.5	88.1	91.5	94.5	97.1	97.8	97.8	97.8	97.6	97.6	97.6	97.5	97.5	97.5	97.5	97.5
2 kHz	80.0	80.5	82.8	86.4	89.8	92.9	95.4	95.1	96.1	96.1	95.9	95.9	95.9	95.8	95.8	95.8	95.9	95.8
2.5 kHz	78.6	79.1	81.3	84.9	88.4	91,4	93.9	94.5	94.6	94.6	94.5	94.5	94.5	94.5	94.5	94.4	94.5	94.5
3.15 kHz	76.2	76.8	79.1	82.7	85.1	89.1	91.5	92.3	92.3	92.2	92.0	91.9	91.9	91.8	91.8	91.7	91.8	91.7
4 KHZ	75.5	76.1	78.3	81.9	85.3	88.4	90.9	91.5	91.6	91.6	91.5	91.4	91.4	91.4	91.4	91.4	91.4	91.4
5 kHz	69.1	70.5	73.1	76.5	79.8	82.7	85.2	0.38	85.7	85.1	84.5	84.2	83.9	83.7	83.5	83.3	83.2	83.0
6.3 kHz	63.7	65.4	68.0	713	74.5	77.A	79.9	80.8	80.4	79.5	78.8	78.4	78.0	77.7	77.4	77.2	77.0	76.8
8 kHz	59.2	60.1	62.4	65.8	69.1	72.0	74.4	75.2	75.0	74.8	74.4	743	74.2	74.0	73.9	73.8	73.8	73.8
10 kHz	54.6	53.7	55.5	59.2	62.6	65.9	68.3	68.6	69.2	70.2	70.8	71.2	71.6	71.9	72.2	72.4	72.8	73.0
A-wgt	93.3	93.7	96.0	99.6	103.0	106.1	108.6	109.3	109.3	109.3	109.3	109.3	109.3	109.3	109.3	109.3	109.3	109.

Table 1: V117-3.45 MW, expected 1/3 octave band performance Mode 0-0S (Blades without serrated trailing edge)

JLBi Conseils - n°2217-3A - février 2020 Page 89 sur 107 ENERTRAG - Projet éolien Sucrerie (80) - Etude d'impact acoustique

Documentation SWT 130

Developer Package, SWT-DD-130 ont ID: E W-30-0000-2439-08 2018.03.06

Estimated Noise Level

Typical sound power levels

The sound power levels are presented with reference to the code IEC 61400-11 ed. 3.0 (2012-11) based on hub height. The sound power levels (Lwx) presented are valid for the corresponding wind speeds referenced

Wind speed [m/s]	3	4	5	6	7	8	9	10	11	12	Up to
Mode 1	92.3	92.3	95.3	98.3	102.3	105.6	107.0	107.0	107.0	107.0	107.0
Mode 2	92.3	92.3	95.3	98.3	102.3	105.6	106.0	106.0	106.0	106.0	106.0
Mode 3	92.3	92.3	95.3	98.3	102.3	105.0	105.0	105.0	105.0	105.0	105.0
Mode 4	92.3	92.3	95.3	98.3	102.3	104.0	104.0	104.0	104.0	104.0	104.0
Mode 5	92.3	92.3	95.3	98.3	102.0	102.0	102.0	102.0	102.0	102.0	102.0
Mode 6	92.3	92.3	95.3	98.3	100.0	100.0	100.0	100.0	100.0	100.0	100.0

Table 1: Acoustic emission, LwA [dB(A) re 1 pW]

Wind speed [m/s]	6	. 8
Mode 1	85.4	92.7
Mode 2	85.4	92.7
Mode 3	85.4	92.6
Mode 4	85.4	92.1
Mode 5	85.4	91.5
Mode 6	85.4	90.3

Table 2: Acoustic emission, Lwa [dB(A) re 1 pW] (10 Hz to 160 Hz)

Low Noise Operations

The lower sound power levels presented for the settings listed above are achieved by adjusting the turbines controller settings, i.e.an optimization of rpm and pitch. The noise settings (modes 4, 5, and 6) are not static and can be applied to optimize the operational output of the turbine. Noise settings can be tailored to time of day as well as wind direction to offer the most suitable solution for a specific location. This functionality is controlled via the WebWPS SCADA system and is described further in the white paper on Noise Reduction Operations. Furthermore, tailored power curves can be provided which take wind speed into consideration allowing for management of the turbine output power and noise emission level to comply with site specific noise requirements. Tailored power curves are project and turbine specific and will therefore require Siemens Gamesa Renewable Energy (SGRE) Siting involvement to provide the optimal solutions. The lower sound power levels may not be applicable to all tower variants. Please contact SGRE for further information.

Typical Sound power frequency distribution

Typical spectra for L_{WA} in dB(A) re 1 pW for the corresponding centre frequencies are tabulated below for 6 and 8 m/s referenced to hub height.

1/1 oct. band, center freq.	63	125	250	500	1000	2000	4000	8000
Mode 1	76.4	84.7	87.4	89.9	92.4	93.4	89.8	76.9
Mode 2	76.4	84.7	87.4	89.9	92.4	93.4	89.8	76.9
Mode 3	76.4	84.7	87.4	89.9	92.4	93.4	89.8	76.9
Mode 4	76.4	84.7	87.4	89.9	92.4	93.4	89.8	76.9
Mode 5	76.4	84.7	87.4	89.9	92.4	93.4	89.8	76.9
Mode 6	76.4	84.7	87.4	89.9	92.4	93.4	89.8	76.9

Table 3: Typical 1/1 octave band spectrum for 63 Hz to 8 kHz at 6 m/s

Slemens Gamesa Renewable Energy A/S

SWT-DD-130 R19 Developer Package rev 8.docx

JLBi Conseils - n°2217-3A - février 2020 Page 90 sur 107

Documentation E82

ENE	RCON	Sound Power Level E-82 E2	Page 2 of 3
Franchist F	and the second second		No. of the last

Sound Power Level for the E-82 E2 with 2300 kW rated power

hub height V _s in 10 m height	78 m	85 m	98 m	108 m	138 m
5 m/s	96,3 dB(A)	96.6 dB(A)	97.2 dB(A)	97.5 dB(A)	98.2 dB(A)
6 m/s	100.7 dB(A)	101.0 dB(A)	101.6 dB(A)	101.9 dB(A)	102.6 dB(A
7 m/s	103.3 dB(A)	103.5 dB(A)	103.6 dB(A)	103.6 dB(A)	103.8 dB(A
8 m/s	104.0 dB(A)	104.0 dB(A)	104.0 dB(A)	104.0 dB(A)	104.0 dB(A
9 m/s	104.0 dB(A)	104.0 dB(A)	104.0 dB(A)	104.0 dB(A)	104.0 dB(A
10 m/s	104.0 dB(A)				
95% rated power	104.0 dB(A)	104.0 dB(A)	104.0 dB(A)	104.0 dB(A)	104.0 dB(A

Measured value at 95% rated power	103,4 dB(A) KCE 208244-03.03 104.0 dB(A) MBBM M95 777/1 104,0 dB(A) KCE 21/372-01.01
-----------------------------------	---

		in relatio	on to win	d speed	at hub h	eight			-
wind speed at hub height [m/s]	7	8	9	10	11	12	13	14	15
Sound Power Level [dB(A)]	96.6	99.9	102.6	103.5	104.0	104.0	104.0	104.0	104.0

- The relation between the sound power level and the standardized wind speed v_s in 10 m height as shown above is valid on the premise of a logarithmic wind profile with a roughness length of 0.05 m. The relation between the sound power level and the wind speed at hub height applies for all hub heights. During the sound measurements the wind speeds are derived from the power output and the power curve of the WEC.
- 2. A tonal audibility of ΔL_{ak} < 2 dB can be expected over the whole operational range (valid in the near vicinity of the turbine according to IEC 61 400 -11 ed. 2).

Document information:	5	© Copyright ENERCON GmbH. All rights reserved.				
Author/Revisor date: Approved / date: Revision /date:	Sr / 2013-01 FWo / 2013-01 1.3 / 2013-01	Documentname	SIAS-04-SPL E-82 E2 OM I 2,3MW Rev1_3-eng-eng.dox			

JLBi Conseils – n°2217-3A – février 2020 Page 91 sur 107

ENERTRAG – Projet éolien Sucrerie (80) – Etude d'impact acoustique

Documentation V90

DMS no.: 0069-8061_00 Issued by: Technology Type: T05

RESTRICTED

V90-2.0 MW Third octave noise emission Date 2017-10-04 Page 5 of 13

3.Results

3.1 Mode 0 results

27						,	Hu	heigh	wind s	peeds [m/s]	,		,			,
Frequency	4m/s	Sm/s	6 m/s	7 m/s	8 m/s	9 m/s	10 m/s	11 m/s	12 m/s	13 m/s	14 m/s	15 m/s	16 m/s	17 m/s	18 m/s	19 m/s	20 m/s
8.3 Hz	12.6	13.7	17.6	21.8	24.4	25.1	25.2	25.3	28.1	28.9	27.6	28.0	28.4	28.8	29.0	29.3	29.
8 Hz	18.9	20.1	24.4	28.7	31.7	32.4	32.4	32.5	33.5	34.3	35.0	35.5	35.9	98.3	36.6	30.0	37
10 Hz	25.5	26.9	31.3	35.6	38.5	39.3	39.3	39.4	40.3	41.1	41.8	42.3	42.7	43.1	43.4	43.6	43
12.6 Hz	33.7	35.1	39.5	43.7	46.6	47.3	47.4	47.5	48.3	40.2	49.8	50.3	50.6	51.0	51.3	51.6	51
18 Hz	40.8	42.1	48.0	49.6	52.2	52.0	59.0	53.1	53.0	54.6	55.1	55.6	55.9	58.2	58.4	50.0	56
20 Hz	48.8	49.9	53.1	56.2	58.4	59.0	59.1	59.2	59.0	60.6	61.2	61.6	61.8	62.2	62.4	62.6	62
26 Hz	50.7	52.0	56.4	60.6	63.4	84.1	84.1	64.2	65.2	88.1	66.8	67.3	67.7	68.1	68.4	68.7	es
31.6 Hz	56.8	58.0	61.6	65.2	67.8	68.5	68.6	68.7	69.4	70.0	70.5	70.9	71.2	71.5	71.7	71.9	72
40 Hz	58.1	60.4	65.9	71.1	74.7	75.6	76.0	76.0	76.4	76.7	77.0	77.1	77.2	77.4	77.A	77.5	77
60 Hz	59.6	62.5	68.6	75.0	79.2	80.9	81.7	61.6	80.8	79.9	79.1	78.6	78.1	77.0	77.2	78.9	76
63 Hz	67,5	69.4	74.2	79.1	82.5	83.6	83.8	83.9	84.2	84.5	84.7	84.8	84.9	85,0	85.0	85.1	85
80 Hz	69.4	71.5	76.0	80.3	83.3	84.4	84.7	84.7	84.8	84.9	85.0	85.0	85.0	85.0	85.0	85.0	85
100 Hz	79.7	79.8	81.1	82.6	83.7	84.1	84.2	843	85.1	85.9	86.5	87.0	87.3	87.7	87.9	68.2	88
126 Hz	77.5	78.3	80.7	83.0	84.7	85.4	85.5	85.5	86.2	88.9	87.4	87.8	88.1	88.4	88.6	68.8	86
180 Hz	76.4	77.8	80.9	83.9	86.0	86.9	87.1	87.2	87.5	87.9	68.1	88.3	88.4	88.6	88.6	66.7	88
200 Hz	79.3	80.4	82.6	84.8	66.4	87.2	87.4	87.5	87.8	68.1	88.3	88.5	88.8	88.7	88.7	68.8	88
260 Hz	78.2	79.6	82.3	85.1	87.0	87.8	88.1	88.2	88.4	68.5	88.6	88.6	88.7	88.7	88.7	88.7	86
316 Hz	80.6	82.0	84.0	87.4	80.3	90.3	90.7	90.7	90.7	90.6	90.4	90.4	90.3	90.2	90.1	90.0	90
400 Hz	80.1	81.7	84.2	86.7	68.5	89.5	89.9	80.0	89.8	80.6	80.4	89.3	80.1	89.0	88.9	68.8	88
600 Hz	81.2	82.8	85.0	87.4	80.0	90.1	90.5	90.5	90.3	90.0	89.7	80.5	80.4	89.2	89.0	68.9	88
630 Hz	82.1	83.7	88.0	88.4	90.0	91.0	91.5	91.5	91.3	91.0	90.8	90.6	90.4	90.3	90.1	90.0	80
800 Hz	82.5	83.6	88.5	89.3	91.3	92.1	92.3	92.3	92.8	93.3	93.7	93.9	94.1	94.3	94.4	94.6	94
1 kHz	79.8	81.6	85.5	89.5	92.3	93.4	93.7	93.7	93.8	93.8	93.9	93.8	93.8	93.6	93.8	93.8	93
1.26 kHz	80.8	82.6	86.4	90.1	92.7	93.7	94.0	94.0	94.2	94.4	94.5	94.6	94.6	94.6	94.7	94.7	94
1.8 kHz	79.1	80.7	84.7	88.6	91.3	92.2	92.4	925	92.9	93.2	93.5	93.7	93.8	93.9	94.0	94.1	94
2 kHz	79.3	80.9	84.8	88.7	91.5	92.6	92.9	92.9	93.0	93.1	93.1	93.1	93.0	93.0	93.0	93.0	93
2.6 kHz	81,1	82.4	85.0	87.0	89.9	90.9	91.4	91.4	91.2	91.1	90.9	90.8	90.7	90.5	90.4	90.4	90
3.16 kHz	79.8	81.9	84.8	87.9	90.0	91.2	91.8	91.7	91.2	90.6	90.1	89.7	89.4	89.1	88.9	88.6	86
4 kHz	79.9	82.1	84.6	87.4	89.2	90.5	913	912	90.3	80.4	88.7	88.1	87.7	87.2	88.9	86.5	86
6 kHz	77.0	79.2	82.0	85.0	67.0	88.3	69.1	89.0	88.2	87.3	86.6	86.1	85.7	85.2	84.9	84.8	84
8.3 kHz	70.7	79.2	76.7	80.2	82.5	83.0	84.6	84.5	83.7	82.9	82.2	81.7	813	80.6	80.5	80.1	71
8 kHz	62.8	84.7	68.7	730	75.0	77.1	77.5	77.5	77.4	77.2	77.0	76.8	76.7	76.6	76.4	76.3	76
10 kHz	54.2	55.2	59.5	64.1	67.3	68.1	68.1	68.2	69.1	69.9	70.6	71.1	71.4	71.8	72.1	723	72
A-wgt	92.6	94.1	97.0	100.1	102.9	103.3	103.7	103.7	103.7	103.7	103.7	103.7	103.7	103.7	103.7	103.7	10

Table 1 V90 2.0MW Mode 0, Expected 1/3 octave band performance, (no STE)

Vestas Wind Systems A/S - Hedeager 42 - 8200 Aarhus N - Denmark - www.vestas.com

VESTAS PROPRIETARY NOTICE

grief mandener. Too coos-cool very

35 0069-8061 Ver 00 - Approved - Exported from DMS: 2017-11-20 by FAFCA

Page 92 sur 107

JLBi Conseils – n°2217-3A – février 2020

Documentation V100

Type: T05

DMS no.: 0051-2906_02 Issued by: Technology

RESTRICTED

V100-2.0 MW Third octave noise emission Date 2016-03-07

tave noise emission Page 5 of 11

Expected octave band performance, all noise modes.

37								Hub	height s	wind spe	eds [m	(c)						
Frequency	3 m/s	4 m/s	5 m/s	6 m/s	7 m/s	8 m/s	9 m/s	10 m/s	11 m/s	12 m/s	13 m/s	14 m/s	15 m/s	16 m/s	17 m/s	18 m/s	19 m/s	20 m/s
8.3 Hz	16.9	15.2	14.1	17.8	19.2	21.7	23.2	24.5	26.2	27.3	28.1	28.8	29.3	29.7	30.1	30.5	30.8	31.
8 Hz	23.8	22.0	20.9	24.7	26.2	28.7	30.2	31.8	33.4	34.5	35.3	36.0	36.6	37.0	37.4	37.9	38.1	38.
10 Hz	29.7	28.2	27.4	31.2	32.8	35.4	37.0	38.2	39.7	40.7	41.3	41.9	42.4	42.7	43.1	43.4	43.6	48
12.6 Hz	37.0	35.9	35.4	39.2	40.8	43.5	45.0	48.0	47.9	48.0	48.5	49.0	49.3	49.8	40.0	50.1	50.2	50
16 Hz	42.4	41.5	41.1	44.9	46.6	49.2	50.8	51.7	52.8	53.4	53.9	54.2	54.5	54.7	54.9	55.1	55.2	55
20 Hz	47.6	46.8	48.5	50.3	52.1	54.7	58.3	57.2	58.2	58.7	50.1	50.5	50.7	50.0	60.1	60.3	80.4	60
26 Hz	53.2	52.0	51.5	55.4	57.2	59.9	61.5	62.5	63.8	84.5	65.0	65.5	65.8	66.1	66.4	66.7	66,8	66
31.6 Hz	57.3	58.2	55.6	59.5	61.2	63.9	65.5	66.5	67.8	68.6	69.2	69.6	70.0	70.3	70.6	70.8	71.0	71
40 Hz	61.2	60.1	50.7	63.6	65,3	88.0	69.5	70.5	71.7	72.5	72.9	73.4	73.7	74.0	742	74.5	74.6	74
60 Hz	65.4	64.6	64.3	68.1	69.9	72.5	74.1	74.9	75.9	76.5	76.0	77.2	77.4	77.6	77.8	78.0	78.1	78
es Hz	60.4	69.3	eas	73.0	747	77.2	78.6	79.1	79.5	79.7	79.8	79.9	79.9	80.0	80.0	80.0	80.0	79
80 Hz	71.7	71.7	723	75.7	77.4	79.9	81.4	81.8	82.0	82.1	82.2	82.2	82.1	82.1	821	82.1	82.0	81
100 Hz	73.4	73.5	74.0	77.6	79.5	82.0	83.6	83.0	84.2	843	84.3	843	84.3	84.2	84.2	84.2	84.1	84
126 Hz	75.8	76.2	77.0	80.4	82.4	84.9	86.4	80.6	88.8	86.5	88.4	88.3	86.2	88.1	86.0	85.9	85.7	85
160 Hz	77.1	78.1	79.5	82.7	84.7	87.2	88.7	88.5	88.0	87.5	87.2	80.8	86.5	86.2	86.0	85.7	85.4	85
200 Hz	77.9	79.3	81.0	84.3	88.4	88.9	90.4	90.0	89.2	88.5	88.0	87.5	67.0	86.6	86.3	66.0	85.6	85
260 Hz	79.1	80.7	82.8	86.1	88.3	90.8	92.4	91.8	90.7	89.8	89.1	88.6	87.9	87.5	87.1	86.7	88.2	85
316 Hz	60.6	82.6	84.7	87.9	90.1	92.5	94.0	93.4	923	913	90.8	90.0	89.4	88.9	88.5	68.0	87.6	87
400 Hz	81.1	82.4	84.1	87.5	89.6	92.2	937	93.3	92.5	91.9	91.3	90.9	90.4	90.0	89.7	89.4	89.0	88
600 Hz	82.3	83.5	85.2	88.7	90.9	93.6	95.2	94.9	94.1	93.5	93.0	92.6	92.2	91.8	91.5	91.2	90.9	90
830 Hz	82.0	83.9	85.3	88.9	91.0	93.7	95.3	95.2	94.7	94.2	93.9	93.6	93.2	92.9	92.7	92.5	92.2	92
800 Hz																		
TVTIONS:	82.8	83.5	84.0	88.4	90.5	93.2	94.9	94.0	94.7	94.4	94.2	94.0	93.7	93.6	93.4	93.2	93.0	92
1 kHz	64.1	84.1	84.6	88.4	90.4	93.2	94.8	95.2	95.5	95.6	95.7	95.8	95.7	95.7	95.7	95.7	95.8	95
1.26 kHz	84.7	84.1	84.2	88.0	89.9	92.6	94.1	94.8	95.6	98.0	96.3	98.5	96.7	96.8	98.9	97.0	97.0	97
1.8 kHz	83.9	83.8	84.1	87.9	89.8	92.5	940	94.6	95.0	95.3	95.4	95.5	95.5	95.6	95.6	95.6	95.6	95
2 kHz 2.6 kHz	83.1	82.3	82.1	86.1	87.9	90.6	92.2	93,1	94.1	94.6	95.0	95.4	95.6	95.8	98.0	98.2	98.2	98
aidHeimer	81.5	80.1	79.4	83.4	85.0	87.7	89.3	90.5	91.9	92.8	93.4	93.9	94.3	94.7	95.0	95.3	95.5	95
3.16 kHz	78.8	77.6	77.0	80.9	82.6	85.2	86.8	87.9	89.3	90.1	90.7	91.2	91.6	91.9	922	92.5	92.7	92
4 kHz	75.6	74.6	74.1	78.1	79.8	82.5	84.1	85.1	86.3	87.1	87.8	0.88	88.3	88.6	88.8	89.1	89.2	80
6 kHz	71.8	71.2	71.2	75.0	76.8	70.5	81.1	81.7	82.5	82.9	83.1	83.3	83.5	83.6	83.7	83.8	83.8	83
6.3 kHz	65.5	65.9	66.7	70.5	72.5	75.3	76.9	77.1	77.1	77.0	76.9	76.9	76.7	76.6	76.5	76.4	76.3	76
8 kHz	58.2	60.1	62.3	65.7	68.0	70.6	72.2	71.5	70.3	69.3	68.6	680	67.3	66.8	66.4	65.9	65.4	65
10 kHz	50.8	53.8	57.1	60.1	62.6	65.0	66.6	65.2	63.0	81.3	60.1	59.0	58.0	57.2	58.4	55.7	55.0	54
A-wgt	93.7	94.0	95.0	98.6	100.7	103.3	forma	105.0	105.0	2.0 N	105.0	105.0 lode (105.0	105.0	105.0	105.0	105.0	105

Table 1 Expected 1/3 octave band performance V100-2.0 MW, Mode 0 (Standard blade)

Hub height wind speeds [m/s]

Vestas Wind Systems A/S - Hedeager 42 - 8200 Aarhus N - Denmark - www.vestas.com

VESTAS PROPRIETARY NOTICE

JLBi Conseils – n°2217-3A – février 2020 Page 93 sur 107

ENERTRAG - Projet éolien Sucrerie (80) - Etude d'impact acoustique

G. Lexique

Lp Niveau de pression acoustique donné à une distance de la source et

perçu en ce point, il s'exprime en dB(A).

Lw Niveau de puissance acoustique caractérisant l'appareil et servant de

base de calcul pour déterminer une pression à une distance donnée, il s'exprime en dB(A) et dépend de la distance : c'est une valeur

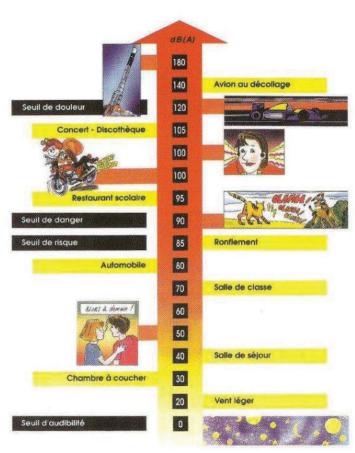
intrinsèque à la source.

LAeq Niveau acoustique continu équivalent.

Niveau sonore Résiduel... Niveau sonore sans l'activité projetée.

Niveau sonore Ambiant.... Niveau sonore global incluant la source sonore étudiée et le niveau

résiduel régnant sur site.


Emergence Différence entre le Niveau sonore Ambiant et le niveau sonore Résiduel.

Indices Fractiles LX Niveau de pression acoustique pondéré A dépassé pendant x % de

l'intervalle de temps considéré les L90 et L50 (niveaux sonores dépassés pendant 90 et 50 % du temps) sont les plus utilisés pour caractériser une

ambiance sonore.

Perception de l'oreille 20 Hz à 20 kHz.

Echelle de Bruit (brochure CIDB « Le Bruit Aujourd'hui »)

JLBi Conseils – n°2217-3A – février 2020 Page 94 sur 107

H. Volet Santé

Sources d'information :

• ADEME - Centre de Sophia-Antipolis - 500, route des Lucioles - 06560 Valbonne tél : 04 93 95 79 00 - web : www.ademe.fr

• CLER - 2 B, rue Jules Ferry - 93100 Montreuil tél : 01 55 86 80 00 - mail : infos@cler.org - web : www.cler.org

Références:

- Wind energy: the facts EWEA European Communitties, 1999
- The clinical stages of vibroacoustic disease Castelo BRANCO, Occupational Medecine Research Center, Lisbon, Portugal in "Aviation, space and environnemental medecine" (USA), Mars 1999
- Académie nationale de médecine : Le retentissement du fonctionnement des éoliennes sur la santé de L'homme: Rapport et recommandations d'un Groupe de Travail, 14 mars 06

JLBi Conseils – n°2217-3A – février 2020 Page 95 sur 107

ENERTRAG - Projet éolien Sucrerie (80) - Etude d'impact acoustique

ÉOLIENNES ET IMPACT SONORE

1 - Caractérisation du bruit

Deux éléments permettent de caractériser une émission sonore :

- La fréquence : Elle s'exprime en Hertz (Hz) et correspond au caractère aigu ou grave d'un son. Une émission sonore est composée de nombreuses fréquences qui constituent son spectre. Le spectre audible s'étend environ de 20 Hz à 20 000 Hz et se décompose comme suit :
 - < 20 Hz : infrasons
 - de 20 à 400 Hz : graves
 - de 400 à 1 600 Hz : médiumsde 1 600 à 20 000 Hz : aigus
- L'intensité: Elle s'exprime en décibels (dB) ou en décibels pondérés "A" notés dB(A). L'oreille procède naturellement à une pondération qui varie en fonction des fréquences. Cette pondération est d'autant plus importante que les fréquences sont basses. Par contre, les hautes fréquences sont perçues telles qu'elles sont émises: c'est pourquoi nous y sommes plus sensibles. Le dB(A) correspond donc au niveau que nous percevons (spectre corrigé de la pondération de l'oreille), alors que le dB correspond à ce qui est physiquement émis.
 - La mesure de pression sonore exprimée en dB ou en dB(A) à l'aide d'un sonomètre permet de quantifier le niveau sonore perçu à une distance donnée.
 - La puissance acoustique d'une source exprimée en watts est la capacité d'une source à émettre un son plus ou moins fort. C'est une grandeur qui se calcule à partir de mesures de pression sonore.

2 - Propagation

Le niveau de pression sonore diminue avec la distance. Plus on s'éloigne de la source et plus le bruit perçu diminue. Ceci s'applique aux éoliennes comme pour n'importe quelle source sonore.

3 – Origine du bruit généré par une éolienne

Le bruit a pu constituer un problème avec les éoliennes de première génération. Elles faisaient appel à des technologies aujourd'hui obsolètes. Le bruit généré par une éolienne a deux origines : le bruit mécanique et le bruit aérodynamique.

o Le bruit mécanique :

Il est créé par les différents organes en mouvement (engrenages à l'intérieur du multiplicateur). Ces dix dernières années, les émissions sonores des éoliennes ont été réduites grâce à un certain nombre d'innovations technologiques :

- Les multiplicateurs actuels sont spécialement conçus pour les éoliennes contrairement à leurs aînés qui utilisaient des systèmes industriels standards. Par ailleurs, des éoliennes sans multiplicateur de vitesse sont aujourd'hui disponibles sur le marché ce qui réduit encore le bruit émis.
- L'analyse de la dynamique des structures permet de bien maîtriser les phénomènes vibratoires qui contribuent à amplifier le son émis par différents composants : les pales, qui se comportaient comme des membranes, pouvaient retransmettre les vibrations sonores en provenance de la nacelle et de la tour. L'utilisation de modèles numériques permet de maîtriser ce phénomène. C'est la manière la plus efficace de réduire le niveau sonore de la machine.
- Le capitonnage de la nacelle permet de réduire les bruits centrés dans les moyennes et hautes fréquences.

JLBi Conseils - n°2217-3A - février 2020 Page 96 sur 107

Le bruit aérodynamique :

Le freinage du vent et son écoulement autour des pales engendrent un son caractéristique, comme un souffle. Ce type de bruit est assimilé au bruit généré par l'activité de la nature : mélange irrégulier de hautes fréquences générées par le passage du vent dans les arbres, les buissons ou encore sur les étendues d'eau. La plus grande partie du bruit a pour origine l'extrémité de la pale et dans une moindre mesure son bord de fuite. L'utilisation de profils et de géométries de pales spécifiques à l'éolien a permis de réduire cette source sonore. Les recherches se poursuivent, principalement pour des raisons de performance. Le passage des pales devant la tour crée un bruit qui se situe dans les basses fréquences. Dans le cas des éoliennes, elles n'ont aucune influence sur la santé humaine.

o La Serration :

La source majeure de bruit d'une éolienne est de type aérodynamique (rotation des pâles) et, à vitesse élevée, le bruit de traînée en constitue la composante principale. Ce dernier est généré lorsque la couche d'air proche de la pâle franchit l'arête de sortie. La serration ou TES (Trailing Edge Serration) consiste à insérer des dentelures en sortie de pale (sur le bord de

Peigne installé sur le bord de fuite

fuite) qui permet d'atteindre une atténuation significative du bruit aérodynamique.

Bruits de fond et effet de masque :

De manière générale, le silence n'existe pas dans l'environnement : les oiseaux, le bruit du vent dans les arbres, les activités humaines génèrent des sons. Un espace est rarement absolument calme, peut-être parfois à la campagne, la nuit, en l'absence de vent. Dans ce cas, les éoliennes restent elles aussi silencieuses.

Le vent, en fonction de sa vitesse, participe à l'effet de masque.

Le niveau sonore d'une éolienne se stabilise lorsque le vent atteint une certaine vitesse. Au-delà de cette vitesse, le niveau sonore du vent continue à augmenter alors que celui de l'éolienne reste stable. Le bruit du vent vient alors couvrir celui de l'éolienne.

4 – Cumul des éoliennes : Que se passe-t-il quand il y a plusieurs éoliennes ?

L'augmentation du niveau sonore n'est en aucun cas proportionnelle mais <u>logarithmique</u>. Cela signifie que la présence de deux sources sonores identiques n'entraîne pas un doublement de la perception de l'intensité sonore. Ainsi, une personne placée à égale distance de deux sources sonores identiques percevra une augmentation du niveau auditif de 3 dB(A). Quatre sources identiques augmenteront le niveau de 6 dB(A).

JLBi Conseils - n°2217-3A - février 2020 Page 97 sur 107

ENERTRAG - Projet éolien Sucrerie (80) - Etude d'impact acoustique

L'EVALUATION ET LA PRÉVENTION DU RISQUE DE NUISANCE SONORE

Il est possible de prévoir la propagation du son autour d'une éolienne ou de plusieurs éoliennes et de limiter ainsi tout risque de nuisances sonores. L'anticipation de l'impact sonore est réalisée en comparant le bruit de la source calculé à proximité des habitations riveraines (niveau sonore différent selon la distance) et le niveau sonore ambiant enregistré au même endroit grâce à un sonomètre, appareil de mesures acoustiques très sensible.

L'émergence, valeur qui caractérise la nuisance sonore, correspond à l'éventuelle augmentation, imputable aux éoliennes, du niveau sonore ambiant.

D'un point de vue réglementaire, rappelons que l'émergence maximale tolérée est de 3 dB(A) la nuit et de 5 dB(A) le jour à l'extérieur d'une maison d'habitation.

Des logiciels tels que Mithra et CadnaA – utilisés par JLBi Conseils – permettent de tracer les courbes isophoniques (d'égal niveau sonore) autour des éoliennes. Ces courbes matérialisent la propagation du son. Le modèle de calcul tient également compte de la topographie, de l'occupation du sol, de l'absorption acoustique du sol, de l'atténuation atmosphérique et des données météorologiques (rose des vents) enregistrées sur le site. La propagation du son est bien sûr plus importante dans le sens des vents dominants.

Dans certains cas, la modification du schéma d'implantation des éoliennes peut être rendue nécessaire après analyse des différentes simulations d'implantation.

L'impact des basses fréquences sur la santé humaine

Les éoliennes émettent des basses fréquences. Si ces dernières peuvent effectivement, dans certains cas, avoir une influence sur la santé humaine, elles sont parfaitement inoffensives dans le cas des éoliennes.

La nocivité des basses fréquences a pour origine les effets vibratoires qu'elles induisent au niveau de certains organes creux de notre corps. On parle alors de maladies vibro-acoustiques (MVA). Elles sont causées par une exposition prolongée (supérieure ou égale à 10 ans) à un environnement sonore caractérisé à la fois par une forte intensité (supérieure ou égale à 90 dB) et par l'émission de basses fréquences (d'une fréquence inférieure ou égale à 500 Hz).

Des cas de MVA ont été décrits chez des techniciens aéronautiques travaillant dans ce type d'environnement sonore. Les études scientifiques sur l'effet des basses fréquences sur l'homme excluent en revanche tout risque sanitaire dans le cas de sources sonores à faible pression acoustique. Pour engendrer des effets nocifs à longue distance, les énergies mises en jeu en basses fréquences devraient être considérables ce qui est loin d'être le cas des éoliennes. La pression acoustique susceptible de provoquer des troubles correspond à celle enregistrée à l'intérieur d'une nacelle en fonctionnement. Si les basses fréquences peuvent se propager assez loin, l'intensité sonore diminue rapidement (voir fiche éoliennes & impact sonore).

JLBi Conseils – n°2217-3A – février 2020 Page 98 sur 107

ACADEMIE NATIONALE DE MEDECINE LE RETENTISSEMENT DU FONCTIONNEMENT DES EOLIENNES SUR LA SANTE DE L'HOMME

Rapport et recommandations d'un Groupe de Travail / 14 mars 2006

L'Association APSA (Association pour la protection des Abers) a demandé par lettre du 7 mars 2005 au Ministre de la Santé et des Solidarités, que soit étudiée l'éventualité d'une action nocive des éoliennes sur la santé de l'homme. Elle en a adressé une copie pour information au Président de l'Académie nationale de médecine. Le Conseil d'Administration de celle-ci a jugé nécessaire, dans sa réunion du 15 mars 2005, de se saisir du problème, et d'en confier l'examen à un Groupe de Travail spécialement créé à cet effet.

CONCLUSION du Groupe de Travail :

Le Groupe de Travail réuni à cet effet a étudié, parmi les réticences suscitées par l'installation des éoliennes, celles qui intéressent la santé de l'homme.

Il estime:

- que la production d'infrasons par les éoliennes est, à leur voisinage immédiat, bien analysée et très modérée : elle est sans danger pour l'homme
- qu'il n'y a pas de risques avérés de stimulation visuelle stroboscopique par la rotation des pales des éoliennes
- que les risques traumatiques liés à l'installation, au fonctionnement et au démontage de ces engins sont prévus et prévenus par la réglementation en vigueur pour les sites industriels, qui s'applique à cette phase de l'installation et de la démolition des sites éoliens devenus obsolètes

ANNEXE B du rapport du Groupe de Travail / Le bruit et les infrasons

Les infrasons naturels (vent, tonnerre, etc...) font partie de l'environnement naturel de l'homme. Même s'ils sont inaudibles parce que d'intensité trop faibles, ils sont produits par de nombreuses activités quotidiennes :

- jogging = 90 dB à 2 Hz
- nage = 140 dB à 0,5 Hz
- voyage en voiture vitres ouvertes = 115 dB à 15 Hz

Le seuil d'audibilité des infrasons chez l'homme est de 105 dB pour 8 Hz, de 95 dB pour 16 Hz, 66 dB pour 32 Hz, 45 dB pour 63Hz et de 29 dB pour 29 Hz.

Le seuil de douleur se situe entre 140 dB à 20 Hz et 162 dB à 3 Hz.

On n'observe pas de fatigue auditive, aussi bien pour 140 dB à 14 Hz pendant 30 minutes, que pour 170 dB entre 1 et 10 Hz pendant 30 secondes.

Dans le cas particulier des éoliennes, notons que :

- à 100 mètres d'une éolienne de 1 MW, on trouve 58 dB à la fréquence 8Hz, 74 dB à la fréquence 32 Hz, 83 dB à la fréquence 63 Hz, 90 dB à la fréquence 125 Hz
- les basses fréquences mesurées à 100 mètres des éoliennes se situent donc à au moins 40 dB en dessous du seuil d'audibilité
- à cette distance, l'intensité des infrasons est si faible que ces engins ne peuvent provoquer ni cette gêne, ni cette somnolence liées à une action des infrasons sur la partie vestibulaire de l'oreille interne, que l'on ne peut observer qu'aux plus fortes intensités expérimentalement réalisables

JLBi Conseils – n°2217-3A – février 2020 Page 99 sur 107

ENERTRAG - Projet éolien Sucrerie (80) - Etude d'impact acoustique

I. Matériel utilisé

Sonomètre intégrateur – Classe 1	01dB	DUO	n° 10944	Х
Microphone	GRAS	40CD	n° 161798	Х
Préamplificateur	01dB	I	Intégré	х
Contrôle primitif 01dB-Metravib en date de mars 2016				
Sonomètre intégrateur – Classe 1	01dB	DUO	n° 10539	Х
Microphone	GRAS	40CD	n° 154557	Х
Préamplificateur	01dB		Intégré	Х
Contrôle primitif 01dB-Metravib en date de septembre 2014				
Sonomètre intégrateur – Classe 1	01dB	DUO	n° 10538	Х
Microphone	GRAS	40CD	n° 136963	Х
Préamplificateur	01dB		Intégré	Х
Contrôle primitif 01dB-Metravib en date de septembre 2014				
Sonomètre intégrateur – Classe 1	01dB	DUO	n° 10135	Х
Microphone	GRAS	40CD	n° 136823	Х
Préamplificateur	01dB	l	Intégré	Х
Contrôle primitif 01dB-Metravib en date d'avril 2014				
Sonomètre intégrateur – Classe 1	01dB	DUO	n° 10131	
Microphone	GRAS	40CD	n° 136988	
Préamplificateur	01dB		Intégré	
Contrôle primitif 01dB-Metravib en date de janvier 2014				
Sonomètre intégrateur – Classe 1	01dB	DUO	n° 10201	Х
Microphone	GRAS	40CD	n°136999	Х
Préamplificateur	01dB		Intégré	Х
Contrôle primitif 01dB-Metravib en date de février 2016	•	•		
Sonomètre intégrateur – Classe 1	01dB	BLUESOLO	n° 61918	
Microphone	GRAS	MCE 212	n° 103342	
Préamplificateur 1	01dB	PRE 21 S		1
Préamplificateur 2	01dB	PRE 21 W	n° 30670	I
Contrôle primitif 01dB-Metravib en date de janvier 2015	• •			1
Sonomètre intégrateur – Classe 1	01dB	BLUESOLO	n° 61446	
Microphone	GRAS	MCE 212	n° 96329	I
Préamplificateur 1	01dB	PRE 21 S	n° 14422	
Contrôle primitif 01dB-Metravib en date de septembre 2015	O IUB	FRE 213	11 14422	1
	01dD	BLUESOLO.	nº 61045	V
Sonomètre intégrateur – Classe 1 Microphone	01dB	BLUESOLO MCE 212	n° 61015	X X
	GRAS	MCE 212	n° 65646 n° 30616	X
Préamplificateur 1 Sonomètre intégrateur – Classe 1	01dB 01dB	PRE 21 W BLUESOLO		X
			n° 60207	
Microphone	GRAS	MCE 212	n° 51900	
Préamplificateur 1	01dB	PRE 21 S	n° 12649	
Préamplificateur 2	01dB	PRE 21 W	n° 30569	
Contrôle primitif 01dB-Metravib en date d'avril 2016				
Sonomètre intégrateur – Classe 1	01dB	BLUESOLO	n° 60205	Х
Microphone	GRAS	MCE 212	n° 75255	Х
Préamplificateur 1	01dB	PRE 21 S	n° 12872	
Préamplificateur 2	01dB	PRE 21 W	n° 30670	Х
Sonomètre intégrateur – Classe 1	B&K	2250	n° 2473274	Х
Microphone	B&K	ZC 0032	n° 2895	Х
Préamplificateur	B&K	4189	n° 2457783	Х
Sonomètre intégrateur - Classe 1	B&K	2250	n° 2506855	
Microphone	B&K	ZC 0032	n° 4517	
Préamplificateur	B&K	4189	n° 2529953	
Sonomètre intégrateur – Classe 1	01dB	SIP 95 TR	n° 10873	
Microphone	Microtech	MK 250	n° 6087	
Préamplificateur	01dB	PRE 12 N	n° 23656	
Sonomètre intégrateur – Classe 1	01dB	SOLO Master	n° 10668	Х
Microphone	01dB	MCE 212	n° 75229	l x
Préamplificateur 1	01dB	PRE 21 S	n° 10359	^
Préamplificateur 2	01dB	PRE 21 W	n° 30662	х
Sonomètre intégrateur – Classe 1	01dB	SOLO Master	n° 10667	X
Microphone	01dB	MCE 212	n° 45218	l â
Préamplificateur 1	01dB	PRE 21 S	n° 11006	^
Préamplificateur 2	01dB	PRE 21 W	n° 30730	х
Sonomètre intégrateur – Classe 1	01dB	SOLO Master	n° 10675	x
Microphone	GRAS	MCE 212	n° 10675 n° 45035	l x
Micropnone Préamplificateur	01dB	PRE 21 W	n° 30728	X
Système Mesure bi-voie – Classe 1	01dB	Symphonie	n° 1038	I
Microphone	GRAS	40 AE	n° 5069	I
Microphone Préamplificateur	GRAS	40 AE PRE 12H	n° 5421	I
Preamplificateur Préamplificateur	01dB 01dB	PRE 12H PRE 12H	n° 11443	1
Preamplificateur Plate-forme PC		LT C-500	n° 11328	1
	Fujitsu Stylistic		.0.404=2	_
Sonomètre intégrateur – Classe 1	01dB	SIP 95 TR	n° 10470	
			n° 6509	1
Microphone	Microtech	MK 250		
Microphone Préamplificateur	Microtech 01dB	PRE 12 N	n° 991968	
Microphone Préamplificateur Sonomètre intégrateur – Classe 1	Microtech 01dB 01dB	PRE 12 N SIP 95 TR	n° 991392	
Microphone Préamplificateur Sonomètre intégrateur – Classe 1 Microphone	Microtech 01dB 01dB Microtech	PRE 12 N SIP 95 TR MK 250	n° 991392 n° 5434	
Microphone Préamplificateur Sonomètre intégrateur – Classe 1 Microphone Préamplificateur	Microtech 01dB 01dB Microtech 01dB	PRE 12 N SIP 95 TR MK 250 PRE 12 N	n° 991392 n° 5434 n° 991919	
Microphone Préamplificateur Sonomètre intégrateur – Classe 1 Microphone	Microtech 01dB 01dB Microtech 01dB	PRE 12 N SIP 95 TR MK 250	n° 991392 n° 5434	
Microphone Préamplificateur Sonomètre intégrateur – Classe 1 Microphone Préamplificateur	Microtech 01dB 01dB Microtech 01dB	PRE 12 N SIP 95 TR MK 250 PRE 12 N	n° 991392 n° 5434 n° 991919	
Microphone Préamplificateur Sonomètre intégrateur – Classe 1 Microphone Préamplificateur Dosimètre – Classe 2	Microtech 01dB 01dB Microtech 01dB	PRE 12 N SIP 95 TR MK 250 PRE 12 N SIE 95	n° 991392 n° 5434 n° 991919 n° 30362	
Microphone Préamplificateur Sonomètre intégrateur – Classe 1 Microphone Préamplificateur Dosimètre – Classe 2 Microphone	Microtech 01dB 01dB Microtech 01dB 01dB 01dB MCE	PRE 12 N SIP 95 TR MK 250 PRE 12 N SIE 95 320	n° 991392 n° 5434 n° 991919 n° 30362 n° 12963	
Microphone Préamplificateur Sonomètre intégrateur – Classe 1 Microphone Préamplificateur Dosimètre – Classe 2 Microphone Dosimètre – Classe 2 Microphone	Microtech 01dB 01dB Microtech 01dB 01dB MCE 01dB MCE	PRE 12 N SIP 95 TR MK 250 PRE 12 N SIE 95 320 SIE 95 320	n° 991392 n° 5434 n° 991919 n° 30362 n° 12963 n° 30433 n° 12991	
Microphone Préamplificateur Sonomètre intégrateur – Classe 1 Microphone Préamplificateur Dosimètre – Classe 2 Microphone Dosimètre – Classe 2 Microphone Dosimètre – Classe 2 Dosimètre – Classe 2	Microtech 01dB 01dB Microtech 01dB 01dB 01dB MCE 01dB MCE 01dB	PRE 12 N SIP 95 TR MK 250 PRE 12 N SIE 95 320 SIE 95 320 SIE 95	n° 991392 n° 5434 n° 991919 n° 30362 n° 12963 n° 30433 n° 12991 n° 30803	
Microphone Préamplificateur Sonomètre intégrateur – Classe 1 Microphone Préamplificateur Dosimètre – Classe 2 Microphone Dosimètre – Classe 2 Microphone Dosimètre – Classe 2 Microphone	Microtech 01dB 01dB Microtech 01dB 01dB 01dB MCE 01dB MCE 01dB MCE 01dB MCE	PRE 12 N SIP 95 TR MK 250 PRE 12 N SIE 95 320 SIE 95 320 SIE 95 320 SIE 95 320	n° 991392 n° 5434 n° 991919 n° 30362 n° 12963 n° 30433 n° 12991 n° 30803 n° 13584	
Microphone Préamplificateur Sonomètre intégrateur – Classe 1 Microphone Préamplificateur Dosimètre – Classe 2 Microphone Dosimètre – Classe 2 Dosimètre – Classe 2 Dosimètre – Classe 2	Microtech 01dB 01dB Microtech 01dB 01dB MCE 01dB MCE 01dB MCE 01dB MCE	PRE 12 N SIP 95 TR MK 250 PRE 12 N SIE 95 320 SIE 95 320 SIE 95 320 WED007	n° 991392 n° 5434 n° 991919 n° 30362 n° 12963 n° 30433 n° 12991 n° 30803 n° 13584 n° 10116	
Microphone Préamplificateur Sonomètre intégrateur - Classe 1 Microphone Préamplificateur Dosimètre - Classe 2 Microphone	Microtech 01dB 01dB Microtech 01dB 01dB MCE 01dB MCE 01dB MCE 01dB MCE 01dB MCE 01dB MCE	PRE 12 N SIP 95 TR MK 250 PRE 12 N SIE 95 320 SIE 95 320 SIE 95 320 WED007 321	n° 991392 n° 5434 n° 991919 n° 30362 n° 12963 n° 30433 n° 12991 n° 30803 n° 13584 n° 10116 n° 10634	
Microphone Préamplificateur Sonomètre intégrateur – Classe 1 Microphone Préamplificateur Dosimètre – Classe 2 Microphone	Microtech 01dB 01dB Microtech 01dB 01dB 01dB 01dB MCE 01dB MCE 01dB MCE 01dB MCE 01dB MCE	PRE 12 N SIP 95 TR MK 250 PRE 12 N SIE 95 320 SIE 95 320 SIE 95 320 SIE 95 320 WED007 321 WED007	n° 991392 n° 5434 n° 991919 n° 30362 n° 12963 n° 30433 n° 12991 n° 30803 n° 13584 n° 10116 n° 10634 n° 10118	
Microphone Préamplificateur Sonomètre intégrateur – Classe 1 Microphone Préamplificateur Dosimètre – Classe 2 Microphone	Microtech 01dB 01dB Microtech 01dB 01dB 01dB MCE	PRE 12 N SIP 95 TR MK 250 PRE 12 N SIE 95 320 SIE 95 320 SIE 95 320 SIE 95 320 WED007 321 WED007 321	n° 991392 n° 5434 n° 991919 n° 30362 n° 12963 n° 30433 n° 12991 n° 30803 n° 13584 n° 10116 n° 10634 n° 10118	
Microphone Préamplificateur Sonomètre intégrateur - Classe 1 Microphone Préamplificateur Dosimètre - Classe 2 Microphone Dosimètre - Classe 2	Microtech 01dB 01dB Microtech 01dB 01dB 01dB MCE	PRE 12 N SIP 95 TR MK 250 PRE 12 N SIE 95 320 SIE 95 320 SIE 95 320 WED007 321 WED007 321 WED007	n° 991392 n° 5434 n° 991919 n° 30362 n° 12963 n° 30433 n° 12991 n° 30803 n° 13584 n° 10116 n° 10634 n° 10118 n° 10280 n° 10163	
Microphone Préamplificateur Sonomètre intégrateur - Classe 1 Microphone Préamplificateur Dosimètre - Classe 2 Microphone	Microtech 01dB 01dB Microtech 01dB 01dB 01dB MCE	PRE 12 N SIP 95 TR MK 250 PRE 12 N SIE 95 320 SIE 95 320 SIE 95 320 WED007 321 WED007 321 WED007 321	n° 991392 n° 5434 n° 991919 n° 30362 n° 12963 n° 30433 n° 12991 n° 30803 n° 13584 n° 10116 n° 10634 n° 10118 n° 10280 n° 10163 n° 10163	
Microphone Préamplificateur Sonomètre intégrateur – Classe 1 Microphone Préamplificateur Dosimètre – Classe 2 Microphone Dosimètre – Classe 2	Microtech 01dB 01dB Microtech 01dB 01dB 01dB 01dB MCE	PRE 12 N SIP 95 TR MK 250 PRE 12 N SIE 95 320 SIE 95 320 SIE 95 320 WED007 321 WED007 321 WED007 321 WED007	n° 991392 n° 5434 n° 991919 n° 30362 n° 12963 n° 30433 n° 12991 n° 30803 n° 13584 n° 10116 n° 10634 n° 10118 n° 10280 n° 10163 n° 10161	
Microphone Préamplificateur Sonomètre intégrateur – Classe 1 Microphone Préamplificateur Dosimètre – Classe 2 Microphone	Microtech 01dB 01dB Microtech 01dB 01dB 01dB MCE	PRE 12 N SIP 95 TR MK 250 PRE 12 N SIE 95 320 SIE 95 320 SIE 95 320 WED007 321 WED007 321 WED007 321 WED007 321 WED007 321	n° 991392 n° 5434 n° 991919 n° 30362 n° 12963 n° 30433 n° 12991 n° 30803 n° 13584 n° 10116 n° 10634 n° 10118 n° 10280 n° 10163 n° 10164	
Microphone Préamplificateur Sonomètre intégrateur – Classe 1 Microphone Préamplificateur Dosimètre – Classe 2 Microphone Dosimètre – Classe 2	Microtech 01dB 01dB Microtech 01dB 01dB 01dB 01dB MCE	PRE 12 N SIP 95 TR MK 250 PRE 12 N SIE 95 320 SIE 95 320 SIE 95 320 WED007 321 WED007 321 WED007 321 WED007	n° 991392 n° 5434 n° 991919 n° 30362 n° 12963 n° 30433 n° 12991 n° 30803 n° 13584 n° 10116 n° 10634 n° 10118 n° 10280 n° 10163 n° 10161	

JLBi Conseils – n°2217-3A – février 2020 Page 100 sur 107

Dosimètre – Classe 2	01dB	WED007	n° 13661	
Microphone	MCE	321	n° 21628	
Dosimètre – Classe 2 Microphone	01dB MCE	WED007 321	n° 13662 n° 21752	
Dosimètre – Classe 2	01dB	WED007	n° 13658	
Microphone Province Classical Control of the Contro	MCE	321	n° 21442	
Dosimètre – Classe 2 Microphone	01dB MCE	WED007 321	n° 13659 n° 21576	
Dosimètre – Classe 2	01dB	WED007	n° 13660	1
Microphone	MCE	321	n° 21685	
Calibreur Calibreur	01dB 01dB	CAL21 CAL01S	n° 51030950 n° 40250	Х
Calibreur	B&K	4231	n° 2542094	
Calibreur	01dB	CAL21	n° 34282698	
Calibreur Télémètre laser	01dB leica	CAL21 DISTO D2	n° 35183017	
Télémètre laser	PCE Instrument	PCE LRF 600		
Analyseur de Vibrations	B&K	4447-A	n° 610244	
Capteur corps-complet (tri-axial) Capteur main-bras (tri-axial)	B&K B&K	4515-B-002 4520-002	n° 2596468 n° 54057	
Accéléromètre mono-axial	B&K	4508 B	n° 30480	
Contrôleur multi-fréquences	01dB	CDS	n° 10140	
Puissance – Alimentation	01dB	VES 95	n° 10374	
Puissance – Alimentation Puissance – Alimentation	01dB 01dB	VES 21 VES 21	n° 10033 n° 10035	
Puissance – Alimentation	01dB	VES 21	n° 10050	
Puissance – Alimentation Puissance – Alimentation	B&K B&K			
Puissance – Alimentation Puissance – Alimentation	01dB	VES 21	n° 10104	
Puissance – Alimentation	01dB	VES 21	n° 10184	
Puissance – Alimentation Puissance – Alimentation	01dB 01dB	VES 21 VES 21	n° 10253 n° 10278	
Ensemble Monitoring OPER@	01dB	EXP	n°30101	-
Surveillance sites industriels et urbains	o rub	RF	n°120214	
			n°120195	
Afficheur de niveau sonore	AMIX	AFF 30	n°120204 n° 35536	+
Microphone	AMIX	CAP 20	n° 35529	
Afficheur de niveau sonore	AMIX	AFF 30	n° 35733	
Microphone Afficheur de niveau sonore	AMIX AMIX	CAP 20 AFF 30	n° 35527 n° 35731	
Microphone	AMIX	CAP 20	n° 35531	
Afficheur de niveau sonore Microphone	AMIX AMIX	AFF 30 CAP 20	n° 39994 n° 35770	
Source de bruit – Enceinte active	RCF	ART 312A	n° KGXW23988	-
Générateur de bruit rose	Sony	NWZ B162F	n° 1155606	
Source de bruit omnidirectionnelle	A Cappella	Omnipulse 19		
Amplificateur Lecteur CD	AX200 TEAC	11010 CD-P1120		
CD (bruits roses, harmoniques)	GIAC	05 1 1120		
Machine à Chocs	01dB	211A	n° 29660	
Station de mesure de vent	CAMPBELL Scientific NRG Systems	CR200séries Classic #40H		Х
	NRG Systems	Classic #40H		x
	CAMPBELL Scientific COM 110	Kit modem GSM		х
Mât télescopique 10 mètres	SOLAREX – SOP10/x CLARK MASTS	Panneau solaire CSQT		X
Station de mesure de vent	CAMPBELL Scientific	CR200X		^
	YOUNG	WindMonitor 05103		
	WAVECOM BP Solar	Kit modem GSM Panneau solaire		
	BETATHERM	Sondes T° t103		
	VAISALA	Sondes Baro cs106		
Mât télescopique 10 mètres Traitement et Exploitation des données	CLARK MASTS	CSQT	+	
dBConfig32	01dB	v. 4.7		
dBTrig32	01dB	v. 4.7		
dBTrait32 dBBati32	01dB 01dB	v. 5.5 v. 4.7		Х
dBLexd	0.00	v. 4.0.0.5		
Evaluator type 7820	B&K	v. 4.9		
	B&K	v. 2.2		
Vibration Explorer 4447			1	1
Vibration Explorer 4447 Logiciels & Cartographie NoiseAtWork	envvea	v. 3 Type D		
Logiciels & Cartographie NoiseAtWork Acoubat Sound	CSTB	v. 7		
Logiciels & Cartographie NoiseAtWork Acoubat Sound Mithra	CSTB 01dB - CSTB	v. 7 v. 5.0.10		
Logiciels & Cartographie NoiseAtWork Acoubat Sound	CSTB	v. 7		х
Logiciels & Cartographie NoiseAtWork Acoubat Sound Mithra CadnaA	CSTB 01dB - CSTB 01 dB - Datakustik	v. 7 v. 5.0.10 v.3.6		х

Les appareils de mesure sont conformes à la Norme NF S 31-109 « Acoustique & Sonomètres intégrateurs ». Les calibreurs sont conformes à la norme NF S 31-039 « Calibreurs Acoustiques ».Les Vérifications primitives (ou Vérifications après réparation) sont effectuées par le Laboratoire Technique de la Société 01dB-Metravib (01dB-Metravib est habilité par le Ministère de l'Industrie à effectuer les vérifications primitives sur les instruments neufs, réparés ou modifiés – article 13 de l'Arrêté du 27 octobre 1989 relatif à la construction et au contrôle des Sonomètres).Les Vérifications périodiques sont effectuées par le Laboratoire Nationale d'Essais (LNE), tous les deux ans (article 16 de l'Arrêté du 27 octobre 1989 relatif à la construction et au contrôle des Sonomètres).

JLBi Conseils – n°2217-3A – février 2020 Page 101 sur 107

ENERTRAG – Projet éolien Sucrerie (80) – Etude d'impact acoustique

5. Mesurage du bruit de

J. Autovérification du matériel sonométrique

 Examen visuel du Micro N° Série Microphone : 		Modèle Bon état	MCE 212		9	A vérifier	Г	Examen v N° Série	isuel de l'ap 10654	pareillage	Bon état	Modèle ⊽	SOLO Ma	ster A vérifier	г
			_	- 8	Fréquence o	entrale de	es bandes o	foctave (H	z)		_		Niveau g	lobal en	
	13	25	25		50			k	2	k	4	k	dB		
	Valeur attendue	Valeur lue	Valeur attendue	Valeur lue	Valeur attendue	Valeur lue	Valeur attendue	Valeur lue	Valeur attendue	Valeur lue	Valeur attendue	Valeur lue	Valeur attendue	Valeur lue	Ecart toléré
															Valeur lue - valeu calibreur + pondération A
2. Calibrage													93,9	93,9	± 1,5
2 bis. Après calibrage													93,9	93.9	± 0,1
3. Mesurage de la linéarité (en dBA)															Valeur lue - valeu contrôleur + pondération A
niveau haut (94)	94.0	93.7	94.0	93.5	94,0	93,3	94.0	93,2	94,0	93,1	94,0	93,3			±2
niveau moyen (74)	74.0	73,6	74.0	73,4	74,0	73,3	74.0	73,2	74,0	73,2	74.0	73,2			±2
niveau bas (44)	44,0	44,1	44,0	43,1	44,0	43,6	44.0	43,6	44,0	43,0	44,0	43.7			±2
															Valeur lue - valeu contrôleur
4. Mesurage Lin	94.0	93.4	94.0	93.5	94.0	93.2	94.0	93.2	94.0	93.1	94.0	93.4			±2

Valeurs constructeur													- 11.	gamme fournies par le constructeur
														Valeur lue - valeur contrôleur
Vérification des filtres d'octave	94,0	93,5	94,0	93,5	94,0	93,2	94,0	93,2	94,0	93,1	94,0	93,4		± 2
Vérification :		Satisfaisa	inte 🔽			Insatisfais	ante 🗀	11:		Date :	janv-17			
Verification .		Sausiaisa	inte 🗸			msausiais	ante			Date.	janv-17			

 Examen visuel du Micro N° Série Microphone : 		Modèle Bon état	MCE 212		7/	A vérifier	Г	Examen v N° Série	isuel de l'ap 10667	ppareillage		Modèle ⊽	SOLO mas	ster A vérifier	г
	1			-	Fréquence o	ontrala da	e handae	d'actous (H	7)				Niveau g	lobal on	T
	12	25	25		50			k	2	k	4	k	dB(e:
	Valeur attendue	Valeur lue	Valeur attendue	Valeur lue	Valeur attendue	Valeur lue	Valeur attendue	Valeur lue	Valeur attendue	Valeur lue	Valeur attendue	Valeur lue	Valeur attendue	Valeur lue	Ecart toléré
															Valeur lue - valeur calibreur + pondération A
2. Calibrage										. 3			93,9	93,9	± 1,5
2 bis. Après calibrage										j j			93,9	93,9	± 0,1
3. Mesurage de la linéarité (en dBA)															Valeur lue - valeur contrôleur + pondération A
niveau haut (94)	94.0	93,8	94.0	94.0	94,0	93,6	94,0	93,5	94,0	93,4	94,0	93,1			±2
niveau moyen (74)	74.0	73.8	74,0	73,7	74.0	73.6	74,0	73,8	74.0	73,5	74,0	73.0		ļ	±2
niveau bas (44)	44,0	44,2	44,0	42,5	44,0	43,9	44.0	42,6	44.0	43,1	44.0	43,6			±2
															Valeur lue - valeur contrôleur
4. Mesurage Lin	94,0	93,9	94.0	93,8	94,0	93,5	94,0	93,6	94,0	93,4	94,0	93,1			±2
5. Mesurage du bruit de fond		0,0		0,0		0,0		0,0		0,0		1,0		10,5	Inférieur ou égal aux valeurs bas de gamme fournies par
Valeurs constructeur															constructeur
											5				Valeur lue - valeur contrôleur
6. Vérification des filtres d'octave	94,0	93,9	94,0	93,8	94,0	93,5	94,0	93,6	94,0	93,4	94,0	93,1			± 2

JLBi Conseils – n°2217-3A – février 2020 Page 102 sur 107

	Modèle Bon état	MCE 212 ▽			A vérifier	Г			pareillage			SOLO	A vérifier	г
Valeur	Valeur	Valeur	Valeur	Valeur	Valeur	Valeur	Valeur	Valeur	Valeur	Valeur	Valeur	Valeur	Valeur	Ecart toléré
														Valeur lue - valeur calibreur + pondération A
												93,9	93,9	± 1,5
									3			93,9	93,9	± 0,1
														Valeur lue - valeur contrôleur + pondération A
94,0	94,0	94,0	94,1	94,0	93,8	94,0	93,7	94,0	93,7	94,0	93,8			±2
														±2 ±2
94,0	93,9	94,0	93,9	94,0	93,6	94,0	93,7	94,0	93,7	94,0	93,9			Valeur lue - valeur contrôleur ± 2
	0,0		0,0		0,0		0,0		0,0		0,5		8,9	Inférieur ou égal au valeurs bas de gamme fournies par constructeur
														Constructeur
														Valeur lue - valeur contrôleur
94,0	93,7	94,0	93,9	94,0	93,6	94,0	93,7	94,0	93,6	94,0	94,0			± 2
		STATE COMME				de la constantina della consta	*	100		******	3 1		2	
		ante 🔽		Š.	Insatisfais	ante		- 3	Date :	janv-17				
	Satisfaisa													
	Satistatse			JLBi C	ONSEI	LS - AU	TOVER	RIFICAT	ION					
	Sausiaise			JLBi C	ONSEI	LS - AU	TOVER	RIFICAT	ION					
	Modèle	Brüel & Kj		JLBi C	ONSEII		Examen v	RIFICAT risuel de l'ap 2473274			Modèle ▽	Brüel & Kj	aer 2250 A vérifier	Г
	1: Valeur attendue 94.0 74.0 44.0	75229 Bon état 125 Valeur attendue Valeur lue 94.0 94.0 74.0 73.9 44.4 44.4	75229 Bon état V 125 2: Valeur attendue Valeur attendue 94.0 94.0 94.0 94.0 74.0 73.9 74.0 44.4 44.0 44.4 994.0 994.0 994.0 994.0 994.0 994.0 994.0 994.0 994.0 994.0 994.0 994.0 994.0 994.0 994.0 994.0	75229 Bon état 125 250 Valeur attendue Val	75229 Bon état Fréquence of the properties	Total Tot	Total Tot	Total Tot	Total Tot	N° Série : 10668 Fréquence centrale des bandes d'octave (Hz) 125 250 500 1 k 2 k	N° Série : 10668 Bon état Fréquence centrale des bandes d'octave (Hz)	The state of the latter of	No Serie	Total Tota

					JLBi C	ONSEI	LS - AU	TOVE	RIFICAT	ION					
Examen visuel du Microp	ohone	Modèle	Brüel & Ki	aer 4189				Examen	visuel de l'a	ppareillage		Modèle	Brüel & Ki	aer 2250	
N° Série Microphone :	2457783	Bon état	V	By ALLE COMMONS	2	A vérifier	Г	Nº Série :	2473274		Bon état	V	7.1	A vérifier	Г
									24				1		1
	12	DE .	25		Fréquence o			k (H	z) 2	L.	1 4	G.	Niveau g		
							10	T	12		10 2		-		Ecart toléré
	Valeur attendue	Valeur lue	Valeur attendue	Valeur lue	Valeur attendue	Valeur lue	Valeur attendue	Valeur lue	Valeur attendue	Valeur lue	Valeur attendue	Valeur lue	Valeur attendue	Valeur lue	
															Valeur lue - valeur calibreur + pondération A
2. Calibrage													94.0	93.6	± 1,5
2 bis. Après calibrage													94.0	93.9	± 0,1
3. Mesurage de la linéarité (en dBA)															Valeur lue - valeur contrôleur + pondération A
niveau haut (94)	94.0	93,6	94.0	93.7	94,0	93,5	94.0	93,3	94.0	93,1	94.0	93.8	2 0	Ž.	±2
niveau moyen (74)	74.0	73.7	74.0	73,5	74.0	73.5	74.0	73,4	74.0	73,0	74.0	73,8			±2
niveau bas (44)	44,0	44,5	44.0	43,8	44,0	43,6	44,0	43,8	44,0	43,3	44.0	43.7	1. 13		±2
															Valeur lue - valeur contrôleur
Mesurage Lin	94,0	93,7	94,0	93,7	94,0	93,6	94,0	93,5	94.0	93,4	94,0	93,9			±2
5. Mesurage du bruit de fond		0,0		0,0		0,0		0,0		2,3		5,2		11,8	Inférieur ou égal aux valeurs bas de gamme fournies par l
Valeurs constructeur															constructeur
															Valeur lue - valeur contrôleur
Vérification des filtres d'octave	94,0	93,9	94,0	93,7	94,0	93,6	94,0	93,6	94,0	93,3	94,0	94,0			±2
Vérification :		Satisfaisa	ante 🔽		3	Insatisfais	sante 🗀			Date :	06/01/201	7			

JLBi Conseils – n°2217-3A – février 2020 Page 103 sur 107

JLBI CONSEILS - AUTOVERIFICATION

Examen visuel du Microp N° Série Microphone :		Modèle Bon état	MCE212			A vérifier		Examen v N° Série	risuel de l'ap 60205	pareillage		Modèle ⊽	Soloblue	A vérifier	г
				-	Fréquence d	entrale de	s bandes d	octave (H	z)				Niveau o	lobal en	T
	12	5	25		50		1		2	k	4	k	dB		le:
	Valeur attendue	Valeur lue	Valeur attendue	Valeur lue	Valeur attendue	Valeur lue	Valeur attendue	Valeur lue	Valeur attendue	Valeur lue	Valeur attendue	Valeur lue	Valeur attendue	Valeur lue	Ecart toléré
															Valeur lue - valeur calibreur + pondération A
2. Calibrage													93.9	94,5	± 1,5
2 bis. Après calibrage													93,9	94,0	± 0,1
3. Mesurage de la linéarité (en dBA)															Valeur lue - valeur contrôleur + pondération A
niveau haut (94)	94.0	94.4	94.0	94.5	94,0	94.3	94.0	94.0	94.0	93,6	94,0	92.6			±2
niveau moyen (74)	74.0	74.3	74.0	74,3	74.0	74.2	74.0	74.2	74.0	73,6	74.0	72.5			±2
niveau bas (44)	44,0	44,8	44,0	43,3	44,0	44,6	44.0	44,6	44,0	43,8	44,0	43.7	4		±2
															Valeur lue - valeur contrôleur
Mesurage Lin	94,0	94,6	94,0	94,5	94,0	94,2	94,0	94,1	94,0	93,6	94,0	92,7			±2
5. Mesurage du bruit de fond		0,0		0,0		0,0		0,0		0,0		0,0		7,8	Inférieur ou égal aux valeurs bas de gamme fournies par l
Valeurs constructeur															constructeur
7.															Valeur lue - valeur contrôleur
Vérification des filtres d'octave	94,0	94,4	94,0	94,6	94,0	94,2	94,0	94,1	94,0	93,4	94,0	92,8			± 2
Vérification :		Satisfaisa	inte 🔽	2		Insatisfais	ante 🗀			Date :	janv-17				

Fréquence centrale des bandes d'octave (Hz) Niveau global en dB(A)	Examen visuel du Micro N° Série Microphone :		Modèle Bon état	MCE 212		d	A vérifier		Examen v N° Série	isuel de l'ap	pareillage	Bon état	Modèle	Soloblue	A vérifier	-
125	14 Selie Microphone	03040	DUII ELAL	10			A veniller		IN Selle.	01013		Doll etat			A veniller	
Valeur attendue Valeur att																
Valeur Valeur Valeur Attendue Valeur		12	25	25	0	50	10	1	k	2	k	4	k	dB	(A)	
Calibrage Span			0.000		7.500000000		11/2000	141011111111111111111111111111111111111			100000000000000000000000000000000000000					Ecart tolere
2 bis. Après calibrage 3. Mesurage de la linéarité (en dBA) 4. Mesurage niveau haut (94) 4. Mesurage Lin 4. Mesurage Lin 5. Mesurage du bruit de fond 4. Mesurage du bruit de fond 5. Vérification des filtres 94.0 93.4 94.0 94.0 94.0 93.7 94.0 93.9 94.0 93.5 94.0 93.6 93.9 94.0 93.8 94.0 93.8 94.0 93.5 94.0 93.6 93.9 94.0 93.8 94.0 93.8 94.0 93.9 94.0 93.8 9																Valeur lue - valeur calibreur + pondération A
3. Mesurage de la linéarité (en dBA) 4. Mesurage de la linéarité (en dBA) 4. Mesurage du bruit de la linéarité (en dBA) 4. Mesurage Lin 5. Mesurage du bruit de la linéarité (en dBA) 5. Mesurage du bruit de la linéarité (en dBA) 5. Mesurage du bruit de la linéarité (en dBA) 5. Mesurage du bruit de la linéarité (en dBA) 6. Vérification des filtres 94.0 93.4 94.0 94.0 94.0 94.0 93.7 94.0 93.5 94.0 93.6 94.0 93.	2. Calibrage		9				9							93,9	93,9	± 1,5
3. Mesurage de la linéarité (en dBA) (en dBA) (iniveau haut (94) 94,0 93,6 94,0 93,9 94,0 93,9 94,0 73,9 74,0 73,9 74,0 73,7 74,0 73,4 ±2 niveau bas (44) 44,0 43,9 44,0 43,3 44,0 44,3 44,0 44,2 44,0 43,9 44,0 43,9 ±2 4. Mesurage Lin 94,0 93,7 94,0 94,0 93,7 94,0 93,9 94,0 93,7 94,0 93,7 94,0 93,6 ±2 Valeur lue - v contrôleur fond Valeurs constructeur Valeurs bas gamme fournier constructeur Valeur lue - v constructeur Valeur lue - v contrôleur constructeur Valeur lue - v constructeur Valeur lue - v constructeur Valeur lue - v constructeur constructeur Valeur lue - v constructeur constructeur	2 bis. Après calibrage													93,9	93,9	± 0,1
niveau moyen (74) 74,0 73,6 74,0 73,8 74,0 73,9 74,0 73,9 74,0 73,7 74,0 73,4 ±2 niveau bas (44) 44,0 43,9 44,0 43,3 44,0 44,3 44,0 44,2 44,0 43,9 44,0 43,9 ±2 Valeur lue - v contrôleu 4. Mesurage Lin 94,0 93,7 94,0 94,0 93,7 94,0 93,9 94,0 93,7 94,0 93,6 ±2 5. Mesurage du bruit de fond Valeurs constructeur Valeurs constructeur Valeur lue - v contrôleu constructeur																Valeur lue - valeur contrôleur + pondération A
niveau bas (44)	niveau haut (94)	94.0	93,6	94.0	93.9	94,0	93,9	94.0	93.8	94.0	93,8	94.0	93.5			±2
4. Mesurage Lin 94.0 93.7 94.0 94.0 93.7 94.0 93.7 94.0 93.7 94.0 93.7 94.0 93.6 2 ±2 5. Mesurage du bruit de fond 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 8.6 Inférieur ou ég valeurs bas gamme fournier constructeur Valeur lue - v Contrôleu 6. Vérification des filtres 94.0 93.4 94.0 94.0 94.0 93.7 94.0 93.5 94.0 93.6 2 ±2	niveau moyen (74)	74.0	73,6	74.0	73,8	74,0	73.9	74,0	73,9	74,0	73,7	74,0	73,4			±2
4. Mesurage Lin 94.0 93.7 94.0 94.0 93.7 94.0 93.7 94.0 93.7 94.0 93.7 94.0 93.6 contrôleu ± 2 5. Mesurage du bruit de fond 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	niveau bas (44)	44,0	43,9	44,0	43,3	44,0	44,3	44.0	44,2	44,0	43,9	44,0	43,9			± 2
5. Mesurage du bruit de fond 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 8,6 Valeurs bas gamme fournier constructeur Valeurs constructeur Valeur lue - v Contrôleu 6. Vérification des filtres 94.0 93.4 94.0 94.0 94.0 93.7 94.0 93.9 94.0 93.5 94.0 93.6 +2																Valeur lue - valeur contrôleur
5. Mesurage du bruit de fond 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 8,6 valeurs bas gamme fournier constructeur Valeurs constructeur Valeur lue - v contrôleur 6. Vérification des filtres 94.0 93.4 94.0 94.0 94.0 93.7 94.0 93.9 94.0 93.5 94.0 93.6 +2	Mesurage Lin	94,0	93,7	94,0	94,0	94,0	93.7	94,0	93,9	94,0	93.7	94,0	93,6			±2
Valeur lue - v contrôleu 6. Vérification des filtres 94.0 93.4 94.0 94.0 94.0 93.7 94.0 93.9 94.0 93.5 94.0 93.6 +2	fond		0,0		0,0		0,0		0,0		0,0		0,0		8,6	Inférieur ou égal aux valeurs bas de gamme fournies par l
6. Vérification des filtres 94.0 93.4 94.0 94.0 93.7 94.0 93.9 94.0 93.5 94.0 93.6 +2	Valeurs constructeur											170				Constructed
1 940 934 940 940 940 941 937 940 939 940 935 940 936 1 1 2																Valeur lue - valeur contrôleur
d octave	6. Vérification des filtres d'octave	94,0	93,4	94,0	94,0	94,0	93,7	94,0	93,9	94,0	93,5	94,0	93,6			± 2

JLBi Conseils – n°2217-3A – février 2020 Page 104 sur 107

1. Examen visuel du Microphone Modèle GRAS 40CD N° Série Microphone : 136963 Bon état 🔽

. Examen visuel du Micro l' Série Microphone :	phone 136999	Modèle Bon état	GRAS 400	CD	Į.	A vérifier	Г	Examen No Série	risuel de l'ap 10201	ppareillage	Bon état	Modèle ▼	DUO	A vérifier	Г
	-	25	21	50	Fréquence	centrale de		doctave (H	z) 2	k	1 4	k	Niveau g		
	Valeur attendue	Valeur lue	Valeur attendue	Valeur lue	Valeur attendue	Valeur lue	Valeur attendue	Valeur lue	Valeur attendue	Valeur lue	Valeur attendue	Valeur lue	Valeur attendue	Valeur lue	Ecart toléré
															Valeur lue - valeur calibreur + pondération A
Calibrage bis Après calibrage													94,0 94,0	94,0 94,0	± 1,5 ± 0,1
. Mesurage de la linéarité en dBA)															Valeur lue - valeur contrôleur + pondération A
iveau haut (94) iveau moyen (74) iveau bas (44)	94,0 74,0 44,0	93,9 73,8 43,6	94,0 74,0 44,0	93,9 73,7 44,0	94,0 74,0 44,0	93,9 73,8 44,0	94,0 74,0 44,2	93,9 73,9 43,6	94,0 74,0 44,0	93,9 73,7 43,8	94,0 74,0 44,0	94,0 73,7 44,2			±2 ±2 ±2
. Mesurage Lin	94.0	94.0	94.0	94.0	94,0	93,8	94,0	93,9	94.0	93,8	94,0	94.0			Valeur lue - valeur contrôleur ± 2
i. Mesurage du bruit de ond		3,4		2,1		1,4		4,3		2,2		3,6		10,3	Inférieur ou égal au valeurs bas de gamme fournies par constructeur
alcars constructed															Valeur lue - valeur contrôleur
A C C C C C C C C C C C C C C C C C C C	85.55	00.0	94.0	93.6	94.0	93.8	94.0	93.9	94.0	93.7	94.0	94.1			±2
Toctave	94,0	93,9 Satisfaisa	1075		JLBi C	Insatisfais	sante F			Date :	janv-17				
foctave /érification :			1175			Insatisfais	sante F	TOVE	RIFICAT	ION	janv-17	Modèle	DUO	A vérifier	
5. Vérification des filtres foctave /érification : 1. Examen visuel du Micro v ^a Série Microphone :	phone 136823	Satisfaisa Modèle	GRAS 400	CD	JLBi C	Insatisfais ONSEI	LS - AU	TOVER	RIFICAT visuel de l'ap 10135	TION ppareillage	janv-17	Modèle ▽	Niveau g	lobal en	
octave 'érification : Examen visuel du Micro	phone 136823	Satisfaisa Modèle Bon état	GRAS 400	CD	JLBi C	ONSEI A vérifier	LS - AU	Examen No Série	risuel de l'ap	TION ppareillage	janv-17 Bon état	Modèle ▽		lobal en	
l'octave /érification : Examen visuel du Micro	phone 136823	Satisfaisa Modèle Bon état Valeur	GRAS 400	CD 50 Valeur	JLBi Co	ONSEI A vérifier centrale de	LS - AU	TOVER	risuel de l'ap 10135 z) 2 Valeur	rion ppareillage k Valeur	janv-17 Bon état 4 Valeur	Modèle 🔽 k	Niveau g dB Valeur	lobal en (A) Valeur	r
octave férification : Examen visuel du Micro Série Microphone :	phone 136823	Satisfaisa Modèle Bon état Valeur	GRAS 400	CD 50 Valeur	JLBi Co	ONSEI A vérifier centrale de	LS - AU	TOVER	risuel de l'ap 10135 z) 2 Valeur	rion ppareillage k Valeur	janv-17 Bon état 4 Valeur	Modèle 🔽 k	Niveau g dB Valeur	lobal en (A) Valeur	Ecart toléré Valeur lue - valeur calibreur +
cotave érification : Examen visuel du Micro Série Microphone : Calibrage bis. Après calibrage Mesurage de la linéarité en dBA)	phone 136823 1: Valeur attendue	Satisfaisa Modèle Bon état Valeur lue	GRAS 400	CD 50 Valeur lue	JLBi Co	ONSEI A vérifier centrale de 00 Valeur lue	LS - AU Es bandes of 1 Valeur attendue	TOVEF Examen v N° Série : foctave (H k Valeur lue	risuel de l'ariante de l'ariant	Popareillage	janv-17 Bon état 4 Valeur attendue	Modèle Valeur lue	Niveau g dB Valeur attendue	Valeur lue	Valeur lue - valeur calibreur + pondération A ± 1,5 ± 0,1 Valeur lue - valeur contrôleur + pondération A
Calibrage List Après calibrage Mesurage de la linéarité en dBA)	phone 136923 1. Valeur attendue	Modèle Bon état Valeur lue	GRAS 400 Valeur attendue	CD Valeur lue	JLBi Co	A vérifier centrale de 00 Valeur lue	LS - AU LS - AU Valeur attendue	TOVEF Examen N° Série foctave (H k Valeur lue	risuel de l'april 10135 2 Valeur attendue	TON ppareillage k Valeur lue	Bon état 4 Valeur attendue	Modèle F	Niveau g dB Valeur attendue	Valeur lue	Valeur lue - valeur calibreur + pondération A ± 1,5 ± 0,1 Valeur lue - valeur contrôleur + pondération A ± 2
Calibrage bis. Après calibrage bis. Après calibrage mdBA) iveau mayen (74)	phone 136823 1: Valeur attendue	Satisfaisa Modèle Bon état Valeur lue	GRAS 400	CD 50 Valeur lue	JLBi Co	ONSEI A vérifier centrale de 00 Valeur lue	LS - AU Es bandes of 1 Valeur attendue	TOVEF Examen v N° Série : foctave (H k Valeur lue	risuel de l'ariante de l'ariant	Popareillage	janv-17 Bon état 4 Valeur attendue	Modèle Valeur lue	Niveau g dB Valeur attendue	Valeur lue	Valeur lue - valeur calibreur + pondération A ± 1,5 ± 0,1 Valeur lue - valeur contrôleur + pondération A ± 2 ± 2 ± 2
erification : Examen visuel du Micro Série Microphone : Calibrage bis. Après calibrage Mesurage de la linéarité en dBA) weau haut (94) weau bas (44)	phone 136823 1: Valeur attendue	Modèle Bon état Valeur lue	GRAS 400 Valeur attendue 94,0 74,0	50 Valeur lue	JLBi Co	A vérifier Centrale de 00 Valeur lue	LS - AU ses bandes c 1 Valeur attendue	Examen v N° Série Coctave (H k Valeur lue	risuel de l'ariante de l'ariant	Valeur lue	Janv-17 Bon état 4 Valeur attendue 94,0 74,0	Modèle 🔽 k Valeur lue	Niveau g dB Valeur attendue	Valeur lue	Valeur lue - valeur calibreur + pondération A ± 1,5 ± 0,1 Valeur lue - valeur contrôleur + pondération A ± 2 ± 2 ± 2
Calibrage bis. Après calibrage Mesurage de la linéarité en dBA) iveau haut (94) iveau bas (44) Mesurage Lin Mesurage du bruit de ond	phone 136823 1. Valeur attendue 94,0 74,0 44,0	Modèle Bon état Valeur lue 93,8 73,9 44,4	GRAS 400 Valeur attendue 94,0 74,0 44,0	50 Valeur lue 93,9 73.8 44.0	JLBi Co	A vérifier Centrale de 00 Valeur lue 93,9 73,8 44,0	LS - AU Ses bandes of 1 Valeur attendue 94,0 74,0 44,0	Examen v N° Série foctave (H k Valeur lue	risuel de l'ariante de l'ariant	Valeur lue	Janv-17 Bon état Valeur attendue 94,0 74,0 44,0	Modèle k Valeur lue 94,3 74,0 43,8	Niveau g dB Valeur attendue	Valeur lue	Valeur lue - valeur calibreur + pondération A ± 1,5 ± 0,1 Valeur lue - valeur contrôleur + pondération A ± 2 ± 2 ± 2 Valeur lue - valeur contrôleur + valeur contrôl
l'octave /érification : Examen visuel du Micro	phone 136823 1. Valeur attendue 94,0 74,0 44,0	Modèle Bon état 25 Valeur lue 93,8 73,9 44,4	GRAS 400 Valeur attendue 94,0 74,0 44,0	50 Valeur lue 93,9 73,8 44,0	JLBi Co	A vérifier Centrale de 00 Valeur lue 93,9 73,8 44,0	LS - AU Ses bandes of 1 Valeur attendue 94,0 74,0 44,0	Examen v N° Série Foctave (H k Valeur lue 93,9 73,9 44,3	risuel de l'ariante de l'ariant	Valeur lue	Janv-17 Bon état Valeur attendue 94,0 74,0 44,0	Modèle	Niveau g dB Valeur attendue	Valeur lue 94.0 94.0	Ecart toléré Valeur lue - valeur calibreur + pondération A ± 1.5 ± 0.1 Valeur lue - valeur contrôleur + pondération A ± 2 ± 2 ± 2 Valeur lue - valeur contrôleur contrôleur ± 2 Inférieur ou égal au valeurs bas de gamme fournies par

															Valeur lue - valeu calibreur + pondération A
Calibrage bis. Après calibrage													94,0 94,0	94,0 94,0	± 1,5 ± 0,1
3. Mesurage de la linéarité (en dBA)				-											Valeur lue - valeu contrôleur + pondération A
niveau haut (94)	94.0	93.8	94.0	93.9	94.0	93.8	94.0	93,9	94.0	94.0	94.0	93.9	5 0		±2
niveau moyen (74)	74.0	73.8	74.0	73,7	74.0	73.8	74.0	73,9	74.0	74.0	74,0	73,9			±2
niveau bas (44)	44,0	43,9	44,0	43,8	44,0	43,8	44,0	43,9	44,0	43,7	44,0	43,9	B 18		±2
															Valeur lue - valeu contrôleur
4. Mesurage Lin	94.0	93,9	94,0	93,9	94,0	93,8	94,0	93,8	94,0	93,7	94,0	94,0			±2
5. Mesurage du bruit de fond		3,7		3,3		2,1		4,7		4,0		5,4		12,0	Inférieur ou égal a valeurs bas de gamme fournies pa
Valeurs constructeur															constructeur
								10000							Valeur lue - valeu contrôleur
6. Vérification des filtres d'octave	94,0	93,8	94,0	93,8	94,0	93,8	94,0	93,8	94,0	94,0	94,0	94,5			±2
Vérification :	3	Satisfaisa	nte 🔽		3	Insatisfais	sante [Date :	janv-17				
Examen visuel du Micro	ohone	Modèle	GRAS 400		JLBi C	ONSEI	LS - AU					Modèle	DUO		
1. Examen visuel du Micro; N° Série Microphone :	154557			CD F	Fréquence (A vérifier centrale de	□ es bandes d	Examen v N° Série :	risuel de l'ap 10539 z)	ppareillage	Bon état	V	DUO Niveau g		r I
1. Examen visuel du Microp N° Série Microphone :	154557	Bon état	25	CD F	Fréquence	A vérifier centrale de	es bandes d	Examen v N° Série : l'octave (H.	z) 2	opareillage k	Bon état	k	Niveau g	lobal en (A)	
1. Examen visuel du Microp N° Série Microphone :	154557	Bon état	D	CD F	Fréquence (A vérifier centrale de	□ es bandes d	Examen v N° Série :	risuel de l'ap 10539 z)	ppareillage	Bon état	V	Niveau g	lobal en	Ecart toléré
1. Examen visuel du Microp N° Série Microphone :	154557 12 Valeur	Bon état 5 Valeur	25 Valeur	CD F	Fréquence (5)	A vérifier centrale de 00 Valeur	es bandes d	Examen v N° Série : foctave (H. k	z) 2 Valeur	ppareillage k Valeur	Bon état 4 Valeur	k Valeur	Niveau g dB Valeur	lobal en (A) Valeur	
N° Série Microphone :	154557 12 Valeur	Bon état 5 Valeur	25 Valeur	CD F	Fréquence (5)	A vérifier centrale de 00 Valeur	es bandes d	Examen v N° Série : foctave (H. k	z) 2 Valeur	ppareillage k Valeur	Bon état 4 Valeur	k Valeur	Niveau g dB Valeur	lobal en (A) Valeur	Ecart toléré Valeur lue - valeu calibreur +
N° Série Microphone : 2. Calibrage 2. Dis. Après calibrage 3. Mesurage de la linéarité	154557 12 Valeur	Bon état 5 Valeur	25 Valeur	CD F	Fréquence (5)	A vérifier centrale de 00 Valeur	es bandes d	Examen v N° Série : foctave (H. k	z) 2 Valeur	ppareillage k Valeur	Bon état 4 Valeur	k Valeur	Niveau g dB Valeur attendue	Valeur lue	Valeur lue - valeur calibreur + pondération A ± 1,5 ± 0,1
N° Série Microphone : 2. Calibrage 2. Dis. Après calibrage 3. Mesurage de la linéarité (en dBA)	154557 Valeur attendue	Bon état Valeur lue	Valeur attendue	CD F F F F F F F F F F F F F F F F F F F	Fréquence 55 Valeur attendue	A vérifier centrale de 00 Valeur lue	es bandes de la	Examen v Nº Série foctave (H. k Valeur lue	visuel de l'aj 10539 z) 2 Valeur attendue	k Valeur lue	94,0	k Valeur lue	Niveau g dB Valeur attendue	Valeur lue	Valeur lue - valet calibreur + pondération A ± 1,5 ± 0,1 Valeur lue - valet contrôleur + pondération A ± 2
2. Calibrage 2 bis. Après calibrage 3. Mesurage de la linéarité (en dBA) niveau haut (94) niveau moyen (74)	154557 Valeur attendue	Bon état 55 Valeur lue	Valeur attendue	F F F F F F F F F F F F F F F F F F F	Fréquence 5i 5i Valeur attendue	A vérifier centrale de 00 Valeur lue	es bandes de 1 Valeur attendue	Examen v N° Série : foctave (H. k Valeur lue	visuel de l'aj 10539 z) 2 Valeur attendue	k Valeur lue	Bon état 4 Valeur attendue	k Valeur lue	Niveau g dB Valeur attendue	Valeur lue	Valeur lue - valeu calibreur + pondération A ± 1,5 ± 0,1 Valeur lue - valeu contrôleur + pondération A
2. Calibrage 2 bis. Après calibrage 3. Mesurage de la linéarité (en dBA) niveau haut (94) niveau moyen (74)	154557 Valeur attendue	Bon état Valeur lue 93.7 73.9	Valeur attendue	Valeur lue	Fréquence 5 50 Valeur attendue	A vérifier centrale de 00 Valeur lue	es bandes o 1 Valeur attendue	Examen v N° Série foctave (H. k Valeur lue	visuel de l'aj 10539 z) 2 Valeur attendue	k Valeur lue	Bon état 4 Valeur attendue 94,0 74,0	k Valeur lue	Niveau g dB Valeur attendue	Valeur lue	Valeur lue - valeur calibreur + pondération A ± 1,5 ± 0,1 Valeur lue - valeur contrôleur + pondération A ± 2 ± 2 ± 2 Valeur lue - val
2. Calibrage 2. Calibrage 2 bis. Après calibrage 3. Mesurage de la linéarité (en dBA) niveau haut (94) niveau moyen (74) niveau bas (44)	154557 Valeur attendue	Bon état Valeur lue 93.7 73.9	Valeur attendue	Valeur lue	Fréquence 5 50 Valeur attendue	A vérifier centrale de 00 Valeur lue	es bandes o 1 Valeur attendue	Examen v N° Série foctave (H. k Valeur lue	visuel de l'aj 10539 z) 2 Valeur attendue	k Valeur lue	Bon état 4 Valeur attendue 94,0 74,0	k Valeur lue	Niveau g dB Valeur attendue	Valeur lue	Valeur lue - valet calibreur + pondération A ± 1,5 ± 0,1 Valeur lue - valet contrôleur + pondération A ± 2 ± 2 ± 2
N' Série Microphone : 2. Calibrage 2 bis. Après calibrage 3. Mesurage de la linéarité (en dBA) niveau haut (94) niveau moyen (74) niveau bas (44) 4. Mesurage Lin 5. Mesurage du bruit de fond	154557 Valeur attendue 94.0 74.0 44.0	93.7 73.9 43.4	Valeur attendue 94.0 74.0 44.0	50 Valeur lue 93.9 73.8 43.8	Fréquence 51 Valeur attendue 94,0 74,0 44,0	A vérifier centrale de 00 Valeur lue 93.9 73.9 43.9	S bandes of 1 Valeur attendue 94.0 74.0 44.0	Examen v Nº Série : foctave (H: k	yisuel de l'aj 10539 z) 2 Valeur attendue 94,0 74,0 44,0	k Valeur lue 94,0 74,0 43,8	Bon état 4 Valeur attendue 94.0 74.0 44.0	Valeur lue 94,5 74,4 43,6	Niveau g dB Valeur attendue	Valeur lue	Valeur lue - valet calibreur + pondération A ± 1,5 ± 0,1 Valeur lue - valet contrôleur + pondération A ± 2 ± 2 ± 2 Valeur lue - valet contrôleur - tale contrôleur + tale contrôleur - tale co
N' Série Microphone : 2. Calibrage 2 bis. Après calibrage 3. Mesurage de la linéarité (en dBA) niveau haut (94) niveau moyen (74) niveau bas (44) 4. Mesurage Lin 5. Mesurage du bruit de	154557 Valeur attendue 94.0 74.0 44.0	93.7 73.9 43.4	Valeur attendue 94.0 74.0 44.0	93,9 73,8 43,8	Fréquence 5i Valeur attendue 94,0 74,0 44,0	A vérifier centrale de 00 Valeur lue 93,9 73,9 43,9	S bandes of 1 Valeur attendue 94.0 74.0 44.0	Examen v N° Série : foctave (H. k Valeur lue 94.0 74.1 43.8	yisuel de l'aj 10539 z) 2 Valeur attendue 94,0 74,0 44,0	Valeur lue 94,0 74,0 43,8	Bon état 4 Valeur attendue 94.0 74.0 44.0	94,5 74,4 43,6	Niveau g dB Valeur attendue	Valeur lue 94.0 94.0	Valeur lue - valet calibreur + pondération A ± 1,5 ± 0,1 Valeur lue - valet contrôleur + pondération A ± 2 ± 2 ± 2 Valeur lue - valet contrôleur + ± 2 inférieur ou égal a valeurs bas de gamme fournies pa constructeur
2. Calibrage 2. De la linéarité 2. De linéau moyen (74) 2. De la linéarité 2. De la linéarité 2. De linéau moyen (74) 2. De la linéarité 2. De la	154557 Valeur attendue 94.0 74.0 44.0	93.7 73.9 43.4	Valeur attendue 94.0 74.0 44.0	93,9 73,8 43,8	Fréquence 5i Valeur attendue 94,0 74,0 44,0	A vérifier centrale de 00 Valeur lue 93,9 73,9 43,9	S bandes of 1 Valeur attendue 94.0 74.0 44.0	Examen v N° Série : foctave (H. k Valeur lue 94.0 74.1 43.8	yisuel de l'aj 10539 z) 2 Valeur attendue 94,0 74,0 44,0	Valeur lue 94,0 74,0 43,8	Bon état 4 Valeur attendue 94.0 74.0 44.0	94,5 74,4 43,6	Niveau g dB Valeur attendue	Valeur lue 94.0 94.0	Valeur lue - valeu calibreur + pondération A ± 1,5 ± 0,1 Valeur lue - valeu contrôleur + pondération A ± 2 ± 2 ± 2 Valeur lue - valeu contrôleur - taleur lue - valeu contrôleur de valeur lue - valeu contrôleur seas de gamme fournies pa
2. Calibrage 2. Calibrage 2 bis. Après calibrage 3. Mesurage de la linéarité en dBA) niveau haut (94) niveau moyen (74) niveau bas (44) 4. Mesurage Lin 5. Mesurage du bruit de ond	154557 Valeur attendue 94.0 74.0 44.0	93.7 73.9 43.4	Valeur attendue 94.0 74.0 44.0	93,9 73,8 43,8	Fréquence 5i Valeur attendue 94,0 74,0 44,0	A vérifier centrale de 00 Valeur lue 93,9 73,9 43,9	S bandes of 1 Valeur attendue 94.0 74.0 44.0	Examen v N° Série : foctave (H. k Valeur lue 94.0 74.1 43.8	yisuel de l'aj 10539 z) 2 Valeur attendue 94,0 74,0 44,0	Valeur lue 94,0 74,0 43,8	Bon état 4 Valeur attendue 94.0 74.0 44.0	94,5 74,4 43,6	Niveau g dB Valeur attendue	Valeur lue 94.0 94.0	Valeur lue - valeur calibreur + pondération A ± 1.5 ± 0.1 Valeur lue - valeur contrôleur + pondération A ± 2 ± 2 ± 2 Valeur lue - valeur contrôleur ± 2 Inférieur ou égal a valeurs bas de gamme fournies par constructeur

JLBI CONSEILS - AUTOVERIFICATION

Fréquence centrale des bandes d'octave (Hz)

125 250 500 1 k 2 k 4 k dB(A)

Valeur Valeur attendue lue attendue atte

A vérifier □

Examen visuel de l'appareillage Modèle DUO N° Série : 10538 Bon état 🔽

Ecart toléré

JLBi Conseils – n°2217-3A – février 2020 Page 105 sur 107 JLBi Conseils – n°2217-3A – février 2020 Page 106 sur 107

		2011000						1-					1007001		
 Examen visuel du Microp N° Série Microphone : 		Modèle Bon état	GRAS 400	D		A vérifier	Г	N° Série	isuel de l'ap 10944	pareillage	Bon état	Moděle	DUO	A vérifier	Г
					×				100				Parameter 1		
						centrale des bandes		d'octave (Hz)		1 11		Niveau global en			
	125		250		500		77	1			4 k		dB(A)		Ecart toléré
	Valeur attendue	Valeur lue	Valeur attendue	Valeur lue	Valeur attendue	Valeur lue	Valeur attendue	Valeur lue	Valeur attendue	Valeur lue	Valeur attendue	Valeur lue	Valeur attendue	Valeur lue	Lean tolere
															Valeur lue - valeur calibreur + pondération A
2. Calibrage													94.0	94.0	± 1,5
2 bis. Après calibrage													94,0	94.0	± 0,1
3. Mesurage de la linéarité (en dBA)															Valeur lue - valeur contrôleur + pondération A
niveau haut (94)	94,0	93,8	94.0	94.0	94.0	93.8	94,0	93,9	94,0	93,8	94.0	94,1			±2
niveau moyen (74)	74.0	73,8	74,0	73,9	74,0	73.8	74.0	74.0	74.0	73.8	74,0	73,9			±2
niveau bas (44)	44,0	43,8	44,0	43,9	44,0	43,7	44,0	43,9	44,0	44.1	44,0	44,3			± 2
															Valeur lue - valeur contrôleur
Mesurage Lin	94,0	93,9	94,0	94,0	94,0	93,9	94,0	93.9	94,0	93,8	94,0	94,2			±2
5. Mesurage du bruit de fond		5,5		5.0		3,8		5,1		4,1		4,9		11,6	Inférieur ou égal aus valeurs bas de gamme fournies par constructeur
Valeurs constructeur															Constructed
															Valeur lue - valeur contrôleur
Vérification des filtres d'octave	94.0	93,9	94.0	93,9	94,0	93,9	94.0	93,9	94,0	93,8	94,0	94,2			±2